Impaired Cerebrovascular Function in Coronary Artery Disease Patients and Recovery Following Cardiac Rehabilitation

Udunna C Anazodo, J K Shoemaker, Neville Suskin, Tracy Ssali, Danny J J Wang, Keith S St Lawrence, Udunna C Anazodo, J K Shoemaker, Neville Suskin, Tracy Ssali, Danny J J Wang, Keith S St Lawrence

Abstract

Coronary artery disease (CAD) poses a risk to the cerebrovascular function of older adults and has been linked to impaired cognitive abilities. Using magnetic resonance perfusion imaging, we investigated changes in resting cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) to hypercapnia in 34 CAD patients and 21 age-matched controls. Gray matter volume (GMV) images were acquired and used as a confounding variable to separate changes in structure from function. Compared to healthy controls, CAD patients demonstrated reduced CBF in the superior frontal, anterior cingulate (AC), insular, pre- and post-central gyri, middle temporal, and superior temporal regions. Subsequent analysis of these regions demonstrated decreased CVR in the AC, insula, post-central and superior frontal regions. Except in the superior frontal and precentral regions, regional reductions in CBF and CVR were identified in brain areas where no detectable reductions in GMV were observed, demonstrating that these vascular changes were independent of brain atrophy. Because aerobic fitness training can improve brain function, potential changes in regional CBF were investigated in the CAD patients after completion of a 6-months exercise-based cardiac rehabilitation program. Increased CBF was observed in the bilateral AC, as well as recovery of CBF in the dorsal aspect of the right AC, where the magnitude of increased CBF was roughly equal to the reduction in CBF at baseline compared to controls. These exercise-related improvements in CBF in the AC is intriguing given the role of this area in cognitive processing and regulation of cardiovascular autonomic control.

Keywords: aerobic exercise; arterial spin labeling (ASL); cardiac rehabilitation; cerebral blood flow (CBF); cerebral vascular reactivity (CVR); coronary artery disease.

Figures

FIGURE 1
FIGURE 1
An illustration of the pipeline for multimodal voxel-wise mass-univariate analysis of variance performed to determine the singular effect of CAD on regional CBF. Step 1 involved SPM voxel-wise between-group comparisons of CBF images across the brain. Significant clusters from this step were converted to binary masks and used in step 2 to improve voxel-wise multimodal analysis and limit type II errors. In step 2, between-group differences in CBF were examined voxel-wise using BPM with GMV images from VBM analysis serving as covariates. Corrections for multiple comparisons using FDR (p < 0.05) was performed at each step. Clusters that remained signified regions where CBF changes drive the observed differences as in Figure 3 and as listed in Table 2. Illustration was overlaid on glass brains from SPM8 (http://www.fil.ion.ucl.ac.uk/spm/).
FIGURE 2
FIGURE 2
Cerebral blood flow (CBF) and CVR images acquired with pCASL from one subject. The representative CBF (normocapnia; top and hypercapnia; middle) and CVR (bottom) maps demonstrate good gray to white matter contrast in parenchymal CBF and no evidence of intravascular artifacts or signal dropouts. Time courses of PETCO2 and total gray matter CBF show the expected CBF response to capnia. Breathing rate (BR) in breaths per minute (BPM) was maintained at 15 breathes per minute (BPM).
FIGURE 3
FIGURE 3
Regions of decreased gray matter CBF in CAD patients compared to controls. The top portion of the figure shows clusters (yellow) of decreased gray matter CBF overlaid on the axial slices of the Colin27 brain template (MNI) and on a coronal and sagittal slice of the SPM glass brain. Concomitant decrease in GMV and gray matter CBF are shown in the bottom portion of the figure.
FIGURE 4
FIGURE 4
Regions of differences in regional CVR compared between CAD patients (N = 22) and controls at baseline (N = 13). Statistical differences between groups at p < 0.05 are signified by ∗ and error bars indicate standard errors of the mean. R, right; L, left; SFG, superior frontal gyrus; ST, superior temporal gyrus; Ins, insula; PostC, post-central gyrus; MT, middle temporal gyrus; PreC, precentral gyrus; AC, anterior cingulate.
FIGURE 5
FIGURE 5
Increased CBF and recovery in CAD patients post-CR (N = 17). Clusters of higher CBF in right and left anterior cingulate (AC) are shown in red. Conjunction analysis identified recovery of CBF post-CR in a focal area in the right AC (orange, 5; 29; 3, Talairach coordinates) that overlapped with a region of decreased CBF at baseline (yellow).
FIGURE 6
FIGURE 6
Magnitude of regional CBF changes in CAD patients. The magnitude of changes in CBF and GMV in CAD patients at baseline and recovery after CR are shown here as a relative change. Regions were derived from results of baseline comparisons between patients and controls (Table 2). Statistical differences at p < 0.05 are signified by ∗ and error bars indicate standard errors of the mean. See Figure 4 footnote for full name of regions.

References

    1. Allman J. M., Hakeem A., Erwin J. M., Nimchinsky E., Hof P. (2001). The anterior cingulate cortex. Ann. N. Y. Acad. Sci. 935 107–117. 10.1111/j.1749-6632.2001.tb03476.x
    1. Alosco M. L., Gunstad J., Jerskey B. A., Xu X., Clark U. S., Hassenstab J., et al. (2013). The adverse effects of reduced cerebral perfusion on cognition and brain structure in older adults with cardiovascular disease. Brain Behav. 3 626–636. 10.1002/brb3.171
    1. Anazodo U. C., Shoemaker J. K., Suskin N., St. Lawrence K. S. (2013). An investigation of changes in regional gray matter volume in cardiovascular disease patients, pre and post cardiovascular rehabilitation. Neuroimage Clin. 3 388–395. 10.1016/j.nicl.2013.09.011
    1. Anazodo U. C., Thiessen J. D., Ssali T., Mandel J., Günther M., Butler J., et al. (2015). Feasibility of simultaneous whole-brain imaging on an integrated PET-MRI system using an enhanced 2-point Dixon attenuation correction method. Front. Neurosci. 8:434 10.3389/fnins.2014.00434
    1. Asllani I., Borogovac A., Brown T. R. (2008). Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn. Reson. Med. 60 1362–1371. 10.1002/mrm.21670
    1. Beason-Held L. L., Moghekar A., Zonderman A. B., Kraut M. A., Resnick S. M. (2007). Longitudinal changes in cerebral blood flow in the older hypertensive brain. Stroke 38 1766–1773. 10.1161/STROKEAHA.106.477109
    1. Bentourkia M., Bol A., Ivanoiu A., Labar D., Sibomana M., Coppens A., et al. (2000). Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J. Neurol. Sci. 181 19–28. 10.1016/S0022-510X(00)00396-8
    1. Burdette J. H., Laurienti P. J., Espeland M. A., Morgan A., Telesford Q., Vechlekar C. D., et al. (2010). Using network science to evaluate exercise-associated brain changes in older adults. Front. Aging Neurosci. 2:23 10.3389/fnagi.2010.00023
    1. Calhoun D. A., Jones D., Textor S., Goff D. C., Murphy T. P., Toto R. D., et al. (2008). Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the american heart association professional education committee of the council for high blood pressure research. Circulation 117 e510–e526. 10.1161/CIRCULATIONAHA.108.189141
    1. Casanova R., Srikanth R., Baer A., Laurienti P. J., Burdette J. H., Hayasaka S., et al. (2007). Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. Neuroimage 34 137–143. 10.1016/j.neuroimage.2006.09.011
    1. Chapman S. B., Aslan S., Spence J. S., Defina L. F., Keebler M. W., Didehbani N., et al. (2013). Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front. Aging Neurosci. 5:75 10.3389/fnagi.2013.00075
    1. Chen J. J., Rosas H. D., Salat D. H. (2011). Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage 55 468–478. 10.1016/j.neuroimage.2010.12.032
    1. Chung C.-C., Pimentel D., Jor’dan A. J., Hao Y., Milberg W., Novak V. (2015). Inflammation-associated declines in cerebral vasoreactivity and cognition in type 2 diabetes. Neurology 85 450–458. 10.1212/WNL.0000000000001820
    1. Clark A. M., Hartling L., Vandermeer B., McAlister F. A. (2005). Meta-analysis: secondary prevention programs for patients with coronary artery disease. Ann. Intern. Med. 143 659–672. 10.7326/0003-4819-143-9-200511010-00010
    1. Colcombe S. J., Erickson K. I., Scalf P. E., Kim J. S., Prakash R., Mcauley E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. J. Geronotol. 61 1166–1170. 10.1093/gerona/61.11.1166
    1. Colcombe S. J., Kramer A. F., Erickson K. I., Scalf P., McAuley E., Cohen N. J., et al. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. U.S.A. 101 3316–3321. 10.1073/pnas.0400266101
    1. de la Torre J. (2000). Critically attained threshold of cerebral hypoperfusion: the CATCH hypothesis of Alzheimer’s pathogenesis. Neurobiol. Aging 21 331–342. 10.1016/S0197-4580(00)00111-1
    1. de Toledo Ferraz Alves T. C., Ferreira L. K., Busatto G. F. (2010). Vascular diseases and old age mental disorders: an update of neuroimaging findings. Curr. Opin. Psychiatry 23 491–497. 10.1097/YCO.0b013e32833e339c
    1. Fierstra J., Sobczyk O., Battisti-Charbonney A., Mandell D. M., Poublanc J., Crawley A. P., et al. (2013). Measuring cerebrovascular reactivity: what stimulus to use? J. Physiol. 591 5809–5821. 10.1113/jphysiol.2013.259150
    1. Friedman J. I., Tang C. Y., de Haas H. J., Changchien L., Goliasch G., Dabas P., et al. (2014). Brain imaging changes associated with risk factors for cardiovascular and cerebrovascular disease in asymptomatic patients. JACC Cardiovasc. Imaging 7 1039–1053. 10.1016/j.jcmg.2014.06.014
    1. Gauthier C. J., Lefort M., Mekary S., Desjardins-Crépeau L., Skimminge A., Iversen P., et al. (2015). Hearts and minds: linking vascular rigidity and aerobic fitness with cognitive aging. Neurobiol. Aging 36 304–314. 10.1016/j.neurobiolaging.2014.08.018
    1. Giannopoulos S., Katsanos A. H., Kosmidou M., Tsivgoulis G. (2014). Statins and vascular dementia: a review. J. Alzheimers. Dis. 42(Suppl. 3), S315–S320. 10.3233/JAD-132366
    1. Günther M., Oshio K., Feinberg D. A. (2005). Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn. Reson. Med. 54 491–498. 10.1002/mrm.20580
    1. Hayes S. M., Alosco M. L., Forman D. E. (2014). The effects of aerobic exercise on cognitive and neural decline in aging and cardiovascular disease. Curr. Geriatr. Rep. 3 282–290. 10.1007/s13670-014-0101-x
    1. Hayes S. M., Hayes J. P., Cadden M., Verfaellie M. (2013). A review of cardiorespiratory fitness-related neuroplasticity in the aging brain. Front. Aging Neurosci. 5:31 10.3389/fnagi.2013.00031
    1. Howlader N., Noone A. M., Krapcho M., Grashell J., Neyman N., Alterkruse S. F., et al. (eds) (2013). SEER Cancer Statistics Review, 1975-2010. Bethesda, MD: National Cancer Institute.
    1. Ivey F. M., Ryan A. S., Hafer-Macko C. E., Macko R. F. (2011). Improved cerebral vasomotor reactivity after exercise training in hemiparetic stroke survivors. Stroke 42 1994–2000. 10.1161/STROKEAHA.110.607879
    1. Iwamoto Y., Maruhashi T., Fujii Y., Idei N., Fujimura N., Mikami S., et al. (2012). Intima-media thickness of brachial artery, vascular function, and cardiovascular risk factors. Arterioscler. Thromb. Vasc. Biol. 32 2295–2303. 10.1161/ATVBAHA.112.249680
    1. Lavi S., Gaitini D., Milloul V., Jacob G. (2006). Impaired cerebral CO2 vasoreactivity: association with endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 291 H1856–H1861. 10.1152/ajpheart.00014.2006
    1. Lloyd-Jones D. M., Larson M. G., Beiser A., Levy D. (1999). Lifetime risk of developing coronary heart disease. Lancet 353 89–92. 10.1016/S0140-6736(98)10279-9
    1. Lloyd-Jones D. M., Leip E. P., Larson M. G., D’Agostino R. B., Beiser A., Wilson P. W. F., et al. (2006). Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 113 791–798. 10.1161/CIRCULATIONAHA.105.548206
    1. Lu H., Xu F., Rodrigue K. M., Kennedy K. M., Cheng Y., Flicker B., et al. (2011). Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb. Cortex 21 1426–1434. 10.1093/cercor/bhq224
    1. MacIntosh B. J., Swardfager W., Crane D. E., Ranepura N., Saleem M., Oh P. I., et al. (2014). Cardiopulmonary fitness correlates with regional cerebral grey matter perfusion and density in men with coronary artery disease. PLoS ONE 9:e91251 10.1371/journal.pone.0091251
    1. Maldjian J. A., Laurienti P. J., Kraft R. A., Burdette J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19 1233–1239. 10.1016/S1053-8119(03)00169-1
    1. Mampuya W. M. (2012). Cardiac rehabilitation past, present and future: an overview. Cardiovasc. Diagn. Ther. 2 38–49. 10.3978/j.issn.2223-3652.2012.01.02
    1. Marks B. L., Katz L. M., Styner M., Smith J. K. (2011). Aerobic fitness and obesity: relationship to cerebral white matter integrity in the brain of active and sedentary older adults. Br. J. Sport. Med. 45 1208–1215. 10.1136/bjsm.2009.068114
    1. Muller M., Grobbee D. E., Aleman A., Bots M., van der Schouw Y. T. (2007). Cardiovascular disease and cognitive performance in middle-aged and elderly men. Atherosclerosis 190 143–149. 10.1016/j.atherosclerosis.2006.01.005
    1. Murrell C. J., Cotter J. D., Thomas K. N., Lucas S. J. E., Williams M. J. A., Ainslie P. N. (2013). Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: effect of age and 12-week exercise training. Age (Omaha) 35 905–920. 10.1007/s11357-012-9414-x
    1. Nasreddine Z., Phillips N., Bedirian V., Charbonneau S., Whitehead V., Collin I., et al. (2005). The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53 695–699. 10.1111/j.1532-5415.2005.53221.x
    1. Nielson C. A., Frances M. F., Fitzgeorge L., Prapavessis H., Zamir M., Shoemaker J. K. (2014). Impact of a smoking cessation lifestyle intervention on vascular mechanics in young women. Appl. Physiol. Nutr. Metab. 580 572–580. 10.1139/apnm-2013-0272
    1. Novack B. P., Shenkin H. A., Bortin L., Goluboff B., Soffe A. M. (1953). Effects of carbon dioxide inhalation upon the cerebral blood flow and cerbral oxygen consumption in vascular disease. J. Clin. Invest. 32 696–702. 10.1172/JCI102783
    1. Ogoh S., Ainslie P. N. (2009). Cerebral blood flow during exercise: mechanisms of regulation. J. Appl. Physiol. 107 1370–1380. 10.1152/japplphysiol.00573.2009
    1. Okonkwo O. C., Cohen R. A., Gunstad J., Tremont G., Alosco M. L., Poppas A. (2010). Longitudinal trajectories of cognitive decline among older adults with cardiovascular disease. Cerebrovasc. Dis. 30 362–373. 10.1159/000319564
    1. Priebe H.-J. (2000). The aged cardiovascular risk patient. Br. J. Anaesth. 85 763–778. 10.1093/bja/85.5.763
    1. Rasmussen L. S. (2006). Postoperative cognitive dysfunction: incidence and prevention. Best Pract. Res. Clin. Anaesthesiol. 20 315–330. 10.1016/j.bpa.2005.10.011
    1. Rostamian S., van Buchem M. A., Westendorp R. G. J., Jukema J. W., Mooijaart S. P., Sabayan B., et al. (2015). Executive function, but not memory, associates with incident coronary heart disease and stroke. Neurology 85 783–789. 10.1212/WNL.0000000000001895
    1. Shoemaker J. K., Wong S. W., Cechetto D. F. (2012). Cortical circuitry associated with reflex cardiovascular control in humans: does the cortical autonomic network “speak” or “listen” during cardiovascular arousal. Anat. Rec. 295 1375–1384. 10.1002/ar.22528
    1. Sojkova J., Najjar S. S., Beason-Held L. L., Metter E. J., Davatzikos C., Kraut M. A., et al. (2010). Intima-media thickness and regional cerebral blood flow in older adults. Stroke 41 273–279. 10.1161/STROKEAHA.109.566810
    1. Stefanovic B., Hutchinson E., Yakovleva V., Schram V., Russell J. T., Belluscio L., et al. (2008). Functional reactivity of cerebral capillaries. J. Cereb. Blood Flow Metab. 28 961–972. 10.1038/sj.jcbfm.9600590
    1. Tancredi F. B., Lajoie I., Hoge R. D. (2015). Test-retest reliability of cerebral blood flow and blood oxygenation level-dependent responses to hypercapnia and hyperoxia using dual-echo pseudo-continuous arterial spin labeling and step changes in the fractional composition of inspired gases. J. Magn. Reson. Imaging 42 1144–1157. 10.1002/jmri.24878
    1. Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15 273–289. 10.1006/nimg.2001.0978
    1. van Baak M. A., Böhm R. O., Arends B. G., van Hooff M. E., Rahn K. H. (1987). Long-term antihypertensive therapy with beta-blockers: submaximal exercise capacity and metabolic effects during exercise. Int. J. Sports Med. 8 342–347. 10.1055/s-2008-1025681
    1. Wang J., Alsop D. C., Song H. K., Maldjian J. A., Tang K., Salvucci A. E., et al. (2003). Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn. Reson. Med. 50 599–607. 10.1002/mrm.10559
    1. Wendell C. R., Waldstein S. R., Ferrucci L., O’Brien R. J., Strait J. B., Zonderman A. B. (2012). Carotid atherosclerosis and prospective risk of dementia. Stroke 43 3319–3324. 10.1161/STROKEAHA.112.672527
    1. Wendell C. R., Zonderman A. B., Metter E. J., Najjar S. S., Waldstein S. R. (2009). Carotid intimal medial thickness predicts cognitive decline among adults without clinical vascular disease. Stroke 40 3180–3185. 10.1161/STROKEAHA.109.557280
    1. Wong C. N., Chaddock-Heyman L., Voss M. W., Burzynska A. Z., Basak C., Erickson K. I., et al. (2015). Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults. Front. Aging Neurosci. 7:154 10.3389/fnagi.2015.00154
    1. Xu G., Rowley H. A. H., Wu G., Alsop D. C., Shankaranarayanan A., Dowling M., et al. (2010). Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer’s disease. NMR Biomed. 23 286–293. 10.1002/nbm.1462.Reliability
    1. Yan H., Zuo X.-N., Wang D., Wang J., Zhu C., Milham M. P., et al. (2009). Hemispheric asymmetry in cognitive division of anterior cingulate cortex: a resting-state functional connectivity study. Neuroimage 47 1579–1589. 10.1016/j.neuroimage.2009.05.080

Source: PubMed

3
구독하다