Neurophysiological markers of network dysfunction in neurodegenerative diseases

Roisin McMackin, Peter Bede, Niall Pender, Orla Hardiman, Bahman Nasseroleslami, Roisin McMackin, Peter Bede, Niall Pender, Orla Hardiman, Bahman Nasseroleslami

Abstract

There is strong clinical, imaging and pathological evidence that neurodegeneration is associated with altered brain connectivity. While functional imaging (fMRI) can detect resting and activated states of metabolic activity, its use is limited by poor temporal resolution, cost and confounding vascular parameters. By contrast, electrophysiological (e.g. EEG/MEG) recordings provide direct measures of neural activity with excellent temporal resolution, and source localization methodologies can address problems of spatial resolution, permitting measurement of functional activity of brain networks with a spatial resolution similar to that of fMRI. This opens an exciting therapeutic approach focussed on pharmacological and physiological modulation of brain network activity. This review describes current neurophysiological approaches towards evaluating cortical network dysfunction in common neurodegenerative disorders. It explores how modern neurophysiologic tools can provide markers for diagnosis, prognosis, subcategorization and clinical trial outcome measures, and how modulation of brain networks can contribute to new therapeutic approaches.

Keywords: Biomarker; EEG; MEG; Network; Neurodegeneration; TMS.

Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
The transformation of a digitised EEG signal into a frequency power spectrum.
Fig. 2
Fig. 2
EEG signal processing avenues for resting-state and task-based paradigms, the quantitative measures obtained and sample interpretations in neurodegenerative disease.
Fig. 3
Fig. 3
Schematic of a single-pulse TMS procedure and the quantitative characteristics of the resulting motor evoked potential.

References

    1. Abbruzzese G., Dall'Agata D., Morena M., Reni L., Favale E. Abnormalities of parietal and prerolandic somatosensory evoked potentials in Huntington's disease. Electroencephalogr. Clin. Neurophysiol. Potentials Sect. 1990;77:340–346.
    1. Abbruzzese G., Buccolieri A., Marchese R., Trompetto C., Mandich P., Schieppati M. Intracortical inhibition and facilitation are abnormal in Huntington's disease: a paired magnetic stimulation study. Neurosci. Lett. 1997;228:87–90.
    1. Antczak J., Kowalska K., Klimkowicz-Mrowiec A., Wach B., Kasprzyk K., Banach M., Rzeźnicka-Brzegowy K., Kubica J., Słowik A. Repetitive transcranial magnetic stimulation for the treatment of cognitive impairment in frontotemporal dementia: an open-label pilot study. Neuropsychiatr. Dis. Treat. 2018;14:749–755.
    1. Babiloni C., Del Percio C., Lizio R., Noce G., Lopez S., Soricelli A., Ferri R., Pascarelli M.T., Catania V., Nobili F., Arnaldi D., Famà F., Orzi F., Buttinelli C., Giubilei F., Bonanni L., Franciotti R., Onofrj M., Stirpe P., Fuhr P., Gschwandtner U., Ransmayr G., Fraioli L., Parnetti L., Farotti L., Pievani M., D'Antonio F., De Lena C., Güntekin B., Hanoğlu L., Yener G., Emek-Savaş D.D., Triggiani A.I., Taylor J.P., McKeith I., Stocchi F., Vacca L., Frisoni G.B., De Pandis M.F. Levodopa may affect cortical excitability in Parkinson's disease patients with cognitive deficits as revealed by reduced activity of cortical sources of resting state electroencephalographic rhythms. Neurobiol. Aging. 2019;73:9–20.
    1. Bai O., Vorbach S., Hallett M., Floeter M.K. Movement-related cortical potentials in primary lateral sclerosis. Ann. Neurol. 2006;59:682–690.
    1. Ball S.S., Marsh J.T., Schubarth G., Brown W.S., Strandburg R. Longitudinal P300 latency changes in Alzheimer's disease. J. Gerontol. 1989;44:M195–M200.
    1. Banoub M., Tetzlaff J.E., Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials implications for perioperative monitoring. Anesthesiol. J. Am. Soc. Anesthesiol. 2003;99:716–737.
    1. Barratt E.L., Tewarie P.K., Clarke M.A., Hall E.L., Gowland P.A., Morris P.G., Francis S.T., Evangelou N., Brookes M.J. Abnormal task driven neural oscillations in multiple sclerosis: a visuomotor MEG study. Hum. Brain Mapp. 2017;38:2441–2453.
    1. Başar E., Schürmann M., Demiralp T., Başar-Eroglu C., Ademoglu A. Event-related oscillations are ‘real brain responses'--wavelet analysis and new strategies. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2001;39:91–127.
    1. Bede P., Omer T., Finegan E., Chipika R.H., Iyer P.M., Doherty M.A., Vajda A., Pender N., McLaughlin R.L., Hutchinson S., Hardiman O. Connectivity-based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: a multimodal neuroimaging study. Brain Imaging Behav. 2018;1(12)
    1. Brønnick K.S., Nordby H., Larsen J.P., Aarsland D. Disturbance of automatic auditory change detection in dementia associated with Parkinson's disease: a mismatch negativity study. Neurobiol. Aging. 2010;31:104–113.
    1. Canter R.G., Penney J., Tsai L.-H. The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature. 2016;539:187–196.
    1. Caviness J.N., Hentz J.G., Belden C.M., Shill H.A., Driver-Dunckley E.D., Sabbagh M.N., Powell J.J., Adler C.H. Longitudinal EEG changes correlate with cognitive measure deterioration in Parkinson's disease. J. Park. Dis. 2015;5:117–124.
    1. Chang W.H., Kim M.S., Park E., Cho J.W., Youn J., Kim Y.K., Kim Y.-H. Effect of dual-mode and dual-site noninvasive brain stimulation on freezing of gait in patients with Parkinson disease. Arch. Phys. Med. Rehabil. 2017;98:1283–1290.
    1. Coben L.A., Danziger W., Storandt M. A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years. Electroencephalogr. Clin. Neurophysiol. 1985;61:101–112.
    1. Cohen M.X. MIT Press; 2014. Analyzing Neural Time Series Data: Theory and Practice.
    1. Crowell A.L., Ryapolova-Webb E.S., Ostrem J.L., Galifianakis N.B., Shimamoto S., Lim D.A., Starr P.A. Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study. Brain. 2012;135:615–630.
    1. da Silva F.L. EEG and MEG: relevance to neuroscience. Neuron. 2013;80:1112–1128.
    1. Defebvre L., Bourriez J.-L., Dujardin K., Derambure P., Destée A., Guieu J.-D. Spatiotemporal study of bereitschaftspotential and Event-Related Desynchronization during voluntary movement in Parkinson's disease. Brain Topogr. 1994;6:237–244.
    1. Defebvre L., Bourriez J.L., Destee A., Guieu J.D. Movement related desynchronisation pattern preceding voluntary movement in untreated Parkinson's disease. J. Neurol. Neurosurg. Psychiatry. 1996;60:307–312.
    1. Defebvre L., Bourriez J.L., Derambure P., Duhamel A., Guieu J.D., Destee A. Influence of chronic administration of l-DOPA on event-related desynchronization of mu rhythm preceding voluntary movement in Parkinson's disease. Electroencephalogr. Clin. Neurophysiol. Mot. Control. 1998;109:161–167.
    1. Deuschl G., Schade-Brittinger C., Krack P., Volkmann J., Schäfer H., Bötzel K., Daniels C., Deutschländer A., Dillmann U., Eisner W., Gruber D., Hamel W., Herzog J., Hilker R., Klebe S., Kloss M., Koy J., Krause M., Kupsch A., Lorenz D., Lorenzl S., Mehdorn H.M., Moringlane J.R., Oertel W., Pinsker M.O., Reichmann H., Reuss A., Schneider G.-H., Schnitzler A., Steude U., Sturm V., Timmermann L., Tronnier V., Trottenberg T., Wojtecki L., Wolf E., Poewe W., Voges J., German Parkinson Study Group, Section Neurostimulation. A randomized trial of deep-brain stimulation for Parkinson's disease. N. Engl. J. Med. 2006;355:896–908.
    1. Dick J.P., Rothwell J.C., Day B.L., Cantello R., Buruma O., Gioux M., Benecke R., Berardelli A., Thompson P.D., Marsden C.D. The Bereitschaftspotential is abnormal in Parkinson's disease. Brain J. Neurol. 1989;112(Pt 1):233–244.
    1. Diez null, Ortmayr B., Pichler-Zalaudek K., Reisecker F., Pfurtscheller G. Ereignisbezogene EEG-desynchronisation und synchronisation (ERD und ERS) bei idiopathischem Parkinson-Syndrom. Klin. Neurophysiol. 1999;30:15–21.
    1. Dubbelink O., E K.T., Hillebrand A., Stoffers D., Deijen J.B., Twisk J.W.R., Stam C.J., Berendse H.W. Disrupted brain network topology in Parkinson's disease: a longitudinal magnetoencephalography study. Brain. 2014;137:197–207.
    1. Elder G.J., Taylor J.-P. Transcranial magnetic stimulation and transcranial direct current stimulation: treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias? Alzheimers Res. Ther. 2014;6(74)
    1. Floyd A.G., Yu Q.P., Piboolnurak P., Tang M.X., Fang Y., Smith W.A., Yim J., Rowland L.P., Mitsumoto H., Pullman S.L. Transcranial magnetic stimulation in ALS: utility of central motor conduction tests. Neurology. 2009;72:498–504.
    1. Garn H., Coronel C., Waser M., Caravias G., Ransmayr G. Differential diagnosis between patients with probable Alzheimer's disease, Parkinson's disease dementia, or dementia with Lewy bodies and frontotemporal dementia, behavioral variant, using quantitative electroencephalographic features. J. Neural Transm. 2017;124:569–581.
    1. Garrido M.I., Kilner J.M., Stephan K.E., Friston K.J. The mismatch negativity: a review of underlying mechanisms. Clin. Neurophysiol. 2009;120:453–463.
    1. George M.S., Taylor J.J., Short E.B. The expanding evidence base for rTMS treatment of depression. Curr. Opin. Psychiatry. 2013;26:13–18.
    1. Giannicola G., Marceglia S., Rossi L., Mrakic-Sposta S., Rampini P., Tamma F., Cogiamanian F., Barbieri S., Priori A. The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson's disease. Exp. Neurol. 2010;226:120–127.
    1. Gil R., Neau J.P., Dary-Auriol M., Agbo C., Tantot A.M., Ingrand P. Event-related auditory evoked potentials and amyotrophic lateral sclerosis. Arch. Neurol. 1995;52:890–896.
    1. Glover G.H. Overview of functional magnetic resonance Imaging. Neurosurg. Clin. N. Am. 2011;22:133–139.
    1. Goss D.A., Hoffman R.L., Clark B.C. Utilizing transcranial magnetic stimulation to study the human neuromuscular system. J. Vis. Exp. JoVE. 2012
    1. Gratwicke J., Jahanshahi M., Foltynie T. Parkinson's disease dementia: a neural networks perspective. Brain J. Neurol. 2015;138:1454–1476.
    1. Grieve S.M., Menon P., Korgaonkar M.S., Gomes L., Foster S., Kiernan M.C., Vucic S. Potential structural and functional biomarkers of upper motor neuron dysfunction in ALS. Amyotroph. Lateral Scler. Front. Degener. 2015;17:85–92.
    1. Grunhaus L., Dannon P.N., Gershon A.A. Transcranial magnetic stimulation: a new tool in the fight against depression. Dialogues Clin. Neurosci. 2002;4:93–103.
    1. Hanagasi H.A., Gurvit I.H., Ermutlu N., Kaptanoglu G., Karamursel S., Idrisoglu H.A., Emre M., Demiralp T. Cognitive impairment in amyotrophic lateral sclerosis: evidence from neuropsychological investigation and event-related potentials. Brain Res. Cogn. Brain Res. 2002;14:234–244.
    1. Herrmann C.S., Strüber D., Helfrich R.F., Engel A.K. EEG oscillations: from correlation to causality. Int. J. Psychophysiol. 2016;103:12–21. Research on Brain Oscillations and Connectivity in A New Take-Off State.
    1. Horvath A., Szucs A., Csukly G., Sakovics A., Stefanics G., Kamondi A. EEG and ERP biomarkers of Alzheimer's disease: a critical review. Front. Biosci. Landmark Ed. 2018;23:183–220.
    1. Hultin L., Rossini P., Romani G.L., Högstedt P., Tecchio F., Pizzella V. Neuromagnetic localization of the late component of the contingent negative variation. Electroencephalogr. Clin. Neurophysiol. 1996;98:435–448.
    1. Iglesias C., Sangari S., El Mendili M.-M., Benali H., Marchand-Pauvert V., Pradat P.-F. Electrophysiological and spinal imaging evidences for sensory dysfunction in amyotrophic lateral sclerosis. BMJ Open. 2015;5:e007659.
    1. Ikeda A., Lüders H.O., Collura T.F., Burgess R.C., Morris H.H., Hamano T., Shibasaki H. Subdural potentials at orbitofrontal and mesial prefrontal areas accompanying anticipation and decision making in humans: a comparison with Bereitschaftspotential. Electroencephalogr. Clin. Neurophysiol. 1996;98:206–212.
    1. Iyer P.M., Egan C., Pinto-Grau M., Burke T., Elamin M., Nasseroleslami B., Pender N., Lalor E.C., Hardiman O. Functional connectivity changes in resting-state EEG as potential biomarker for amyotrophic lateral sclerosis. PLoS One. 2015;10
    1. Iyer P.M., Mohr K., Broderick M., Gavin B., Burke T., Bede P., Pinto-Grau M., Pender N.P., McLaughlin R., Vajda A., Heverin M., Lalor E.C., Hardiman O., Nasseroleslami B. Mismatch negativity as an indicator of cognitive sub-domain dysfunction in amyotrophic lateral sclerosis. Front. Neurol. 2017;8
    1. Jenkinson N., Brown P. New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci. 2011;34:611–618.
    1. Jones S.R., Pinto D.J., Kaper T.J., Kopell N. Alpha-frequency rhythms desynchronize over long cortical distances: a modeling study. J. Comput. Neurosci. 2000;9:271–291.
    1. Josiassen R.C., Shagass C., Mancall E.L., Roemer R.A. Somatosensory evoked potentials in Huntington's disease. Electroencephalogr. Clin. Neurophysiol. 1982;54:483–493.
    1. Jung J., Morlet D., Mercier B., Confavreux C., Fischer C. Mismatch negativity (MMN) in multiple sclerosis: an event-related potentials study in 46 patients. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2006;117:85–93.
    1. Kaiser D.A. Basic principles of quantitative EEG. J. Adult Dev. 2005;12:99–104.
    1. Khanna A., Pascual-Leone A., Michel C.M., Farzan F. Microstates in resting-state EEG: current status and future directions. Neurosci. Biobehav. Rev. 2015;49:105–113.
    1. Kim M.S., Chang W.H., Cho J.W., Youn J., Kim Y.K., Kim S.W., Kim Y.-H. Efficacy of cumulative high-frequency rTMS on freezing of gait in Parkinson's disease. Restor. Neurol. Neurosci. 2015;33:521–530.
    1. Kimiskidis V.K., Papaliagkas V., Sotirakoglou K., Kouvatsou Z.K., Kapina V.K., Papadaki E., Tsimourtou V., Masoura E., Kazis D.A., Papayiannopoulos S., Geroukis T., Bostanjopoulou S. Cognitive event-related potentials in multiple sclerosis: Correlation with MRI and neuropsychological findings. Mult. Scler. Relat. Disord. 2016;10:192–197.
    1. Kuhn J., Hardenacke K., Lenartz D., Gruendler T., Ullsperger M., Bartsch C., Mai J.K., Zilles K., Bauer A., Matusch A., Schulz R.-J., Noreik M., Bührle C.P., Maintz D., Woopen C., Häussermann P., Hellmich M., Klosterkötter J., Wiltfang J., Maarouf M., Freund H.-J., Sturm V. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer's dementia. Mol. Psychiatry. 2015;20:353–360.
    1. Kwak Y.T. Quantitative EEG findings in different stages of Alzheimer's disease. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2006;23:456–461.
    1. Lai C.-L., Lin R.-T., Liou L.-M., Liu C.-K. The role of event-related potentials in cognitive decline in Alzheimer's disease. Clin. Neurophysiol. 2010;121:194–199.
    1. Lee M.-S., Lee S.-H., Moon E.-O., Moon Y.-J., Kim S., Kim S.-H., Jung I.-K. Neuropsychological correlates of the P300 in patients with Alzheimer's disease. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2013;40:62–69.
    1. Leocani L., Rovaris M., Martinelli-Boneschi F., Annovazzi P., Filippi M., Colombo B., Martinelli V., Comi G. Movement preparation is affected by tissue damage in multiple sclerosis: evidence from EEG event-related desynchronization. Clin. Neurophysiol. 2005;116:1515–1519.
    1. Leon-Sarmiento F.E., Rizzo-Sierra C.V., Bayona E.A., Bayona-Prieto J., Doty R.L., Bara-Jimenez W. Novel mechanisms underlying inhibitory and facilitatory transcranial magnetic stimulation abnormalities in Parkinson's disease. Arch. Med. Res. 2013;44:221–228.
    1. Lesenskyj A.M., Samples M.P., Farmer J.M., Maxwell C.R. Treating refractory depression in Parkinson's disease: a meta-analysis of transcranial magnetic stimulation. Transl. Neurodegener. 2018;7(8)
    1. Liepert J., Bär K.J., Meske U., Weiller C. Motor cortex disinhibition in Alzheimer's disease. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2001;112:1436–1441.
    1. Lindau M., Jelic V., Johansson S.-E., Andersen C., Wahlund L.-O., Almkvist O. Quantitative EEG abnormalities and cognitive dysfunctions in frontotemporal dementia and Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 2003;15:106–114.
    1. Luck S.J., Woodman G.F., Vogel E.K. Event-related potential studies of attention. Trends Cogn. Sci. 2000;4:432–440.
    1. Mai R., Facchetti D., Micheli A., Poloni M. Quantitative electroencephalography in amyotrophic lateral sclerosis. Electroencephalogr. Clin. Neurophysiol. 1998;106:383–386.
    1. Menon P., Geevasinga N., Yiannikas C., Howells J., Kiernan M.C., Vucic S. Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurol. 2015;14:478–484.
    1. Mills K.R. The natural history of central motor abnormalities in amyotrophic lateral sclerosis. Brain. 2003;126:2558–2566.
    1. Mills K.R., Nithi K.A. Corticomotor threshold is reduced in early sporadic amyotrophic lateral sclerosis. Muscle Nerve. 1997;20:1137–1141.
    1. Moeller F., Muthuraman M., Stephani U., Deuschl G., Raethjen J., Siniatchkin M. Representation and propagation of epileptic activity in absences and generalized photoparoxysmal responses. Hum. Brain Mapp. 2013;34:1896–1909.
    1. Momma F., Tsutsui T., Symon L., Ono M. The clinical significance of the P15 wave of the somatosensory evoked potential in tentorial herniation. Neurol. Res. 1987;9:154–158.
    1. Mori F., Codecà C., Kusayanagi H., Monteleone F., Boffa L., Rimano A., Bernardi G., Koch G., Centonze D. Effects of intermittent theta burst stimulation on spasticity in patients with multiple sclerosis. Eur. J. Neurol. 2010;17:295–300.
    1. Mori F., Ljoka C., Magni E., Codecà C., Kusayanagi H., Monteleone F., Sancesario A., Bernardi G., Koch G., Foti C., Centonze D. Transcranial magnetic stimulation primes the effects of exercise therapy in multiple sclerosis. J. Neurol. 2011;258:1281–1287.
    1. Muthuraman M., Koirala N., Ciolac D., Pintea B., Glaser M., Groppa Stanislav, Tamás G., Groppa Sergiu. Deep brain stimulation and L-DOPA therapy: concepts of action and clinical applications in Parkinson's disease. Front. Neurol. 2018;9
    1. Nardone R., Sebastianelli L., Versace V., Saltuari L., Lochner P., Frey V., Golaszewski S., Brigo F., Trinka E., Höller Y. Usefulness of EEG techniques in distinguishing frontotemporal dementia from Alzheimer's disease and other dementias [WWW document] Dis. Markers. 2018
    1. Nasseroleslami B., Dukic S., Broderick M., Mohr K., Schuster C., Gavin B., McLaughlin R., Heverin M., Vajda A., Iyer P.M., Pender N., Bede P., Lalor E.C., Hardiman O. Characteristic increases in EEG connectivity correlate with changes of structural MRI in amyotrophic lateral sclerosis. Cereb. Cortex. 2017:1–15.
    1. Ni Z., Bahl N., Gunraj C.A., Mazzella F., Chen R. Increased motor cortical facilitation and decreased inhibition in Parkinson disease. Neurology. 2013;80:1746–1753.
    1. Nishida K., Yoshimura M., Isotani T., Yoshida T., Kitaura Y., Saito A., Mii H., Kato M., Takekita Y., Suwa A., Morita S., Kinoshita T. Differences in quantitative EEG between frontotemporal dementia and Alzheimer's disease as revealed by LORETA. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2011;122:1718–1725.
    1. Nuwer M. Assessment of digital EEG, quantitative EEG, and EEG brain mapping: report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology. 1997;49:277–292.
    1. Park J., Chang W.H., Cho J.W., Youn J., Kim Y.K., Kim S.W., Kim Y.-H. Usefulness of transcranial magnetic stimulation to assess motor function in patients with Parkinsonism. Ann. Rehabil. Med. 2016;40:81–87.
    1. Patil A.L., Sood S.K., Goyal V., Kochhar K.P. Cortical potentials prior to movement in Parkinson's disease. J. Clin. Diagn. Res. JCDR. 2017;11:CC13–CC16.
    1. Pedroso R.V., Fraga F.J., Corazza D.I., Andreatto C.A.A., de Melo Coelho F.G., Costa J.L.R., Santos-Galduróz R.F. P300 latency and amplitude in Alzheimer's disease: a systematic review. Braz. J. Otorhinolaryngol. 2012;78:126–132.
    1. Pfurtscheller G., Lopes da Silva F.H. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 1999;110:1842–1857.
    1. Pfurtscheller G., Pichler-Zalaudek K., Ortmayr B., Diez J., Reisecker F. Postmovement beta synchronization in patients with Parkinson's disease. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 1998;15:243–250.
    1. Phukan J., Pender N.P., Hardiman O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 2007;6:994–1003.
    1. Pierantozzi M., Palmieri M.G., Mazzone P., Marciani M.G., Rossini P.M., Stefani A., Giacomini P., Peppe A., Stanzione P. Deep brain stimulation of both subthalamic nucleus and internal globus pallidus restores intracortical inhibition in Parkinson's disease paralleling apomorphine effects: a paired magnetic stimulation study. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2002;113:108–113.
    1. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 2007;118:2128–2148.
    1. Pollok B., Krause V., Martsch W., Wach C., Schnitzler A., Südmeyer M. Motor-cortical oscillations in early stages of Parkinson's disease. J. Physiol. 2012;590:3203–3212.
    1. Portet F., Cadilhac C., Touchon J., Camu W. Cognitive impairment in motor neuron disease with bulbar onset. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2001;2:23–29.
    1. Praamstra P., Meyer A.S., Cools A.R., Horstink M.W.I.M., Stegeman D.F. Movement preparation in Parkinson's disease Time course and distribution of movement-related potentials in a movement precueing task. Brain. 1996;119:1689–1704.
    1. Pulvermüller F., Lutzenberger W., Müller V., Mohr B., Dichgans J., Birbaumer N. P3 and contingent negative variation in Parkinson's disease. Electroencephalogr. Clin. Neurophysiol. 1996;98:456–467.
    1. Raggi A., Consonni M., Iannaccone S., Perani D., Zamboni M., Sferrazza B., Cappa S.F. Auditory event-related potentials in non-demented patients with sporadic amyotrophic lateral sclerosis. Clin. Neurophysiol. 2008;119:342–350.
    1. Riva N., Falini A., Inuggi A., Gonzalez-Rosa J.J., Amadio S., Cerri F., Fazio R., Del Carro U., Comola M., Comi G., Leocani L. Cortical activation to voluntary movement in amyotrophic lateral sclerosis is related to corticospinal damage: electrophysiological evidence. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2012;123:1586–1592.
    1. Rockstroh B., Müller M., Wagner M., Cohen R., Elbert T. “Probing” the nature of the CNV. Electroencephalogr. Clin. Neurophysiol. 1993;87:235–241.
    1. Rossini P.M., Burke D., Chen R., Cohen L.G., Daskalakis Z., Di Iorio R., Di Lazzaro V., Ferreri F., Fitzgerald P.B., George M.S., Hallett M., Lefaucheur J.P., Langguth B., Matsumoto H., Miniussi C., Nitsche M.A., Pascual-Leone A., Paulus W., Rossi S., Rothwell J.C., Siebner H.R., Ugawa Y., Walsh V., Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2015;126:1071–1107.
    1. Rutherford G., Lithgow B., Moussavi Z. Short and long-term effects of rTMS treatment on Alzheimer's Disease at different stages: a pilot study. J. Exp. Neurosci. 2015;9:43–51.
    1. Sanacora G., Smith M.A., Pathak S., Su H.-L., Boeijinga P.H., McCarthy D.J., Quirk M.C. Lanicemine: a low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects. Mol. Psychiatry. 2014;19:978–985.
    1. Santhosh J., Bhatia M., Sahu S., Anand S. Decreased electroencephalogram alpha band [8-13 Hz] power in amyotrophic lateral sclerosis patients: a study of alpha activity in an awake relaxed state. Neurol. India. 2005;53:99–101.
    1. Saura C.A., Parra-Damas A., Enriquez-Barreto L. Gene expression parallels synaptic excitability and plasticity changes in Alzheimer's disease. Front. Cell. Neurosci. 2015;9
    1. Scheltens P., Twisk J.W., Blesa R., Scarpini E., von Arnim C.A., Bongers A., Harrison J., Swinkels S.H., Stam C.J., de Waal H. Efficacy of Souvenaid in mild Alzheimer's disease: results from a randomized, controlled trial. J. Alzheimers Dis. 2012;31:225–236.
    1. Schippling S., Schneider S., Bhatia K., Münchau A., Rothwell J., Tabrizi S., Orth M. Abnormal motor cortex excitability in preclinical and very early Huntington's disease. Biol. Psychiatry. 2009;65:959–965.
    1. Shibasaki H., Hallett M. What is the bereitschaftspotential? Clin. Neurophysiol. 2006;117:2341–2356.
    1. St Clair D., Blackburn I., Blackwood D., Tyrer G. Measuring the course of Alzheimer's disease. A longitudinal study of neuropsychological function and changes in P3 event-related potential. Br. J. Psychiatry J. Ment. Sci. 1988;152:48–54.
    1. Stam C.J., Nolte G., Daffertshofer A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 2007;28:1178–1193.
    1. Symms M., Jäger H.R., Schmierer K., Yousry T.A. A review of structural magnetic resonance neuroimaging. J. Neurol. Neurosurg. Psychiatry. 2004;75:1235–1244.
    1. Teramoto H., Morita A., Ninomiya S., Akimoto T., Shiota H., Kamei S. Relation between resting state front-parietal EEG coherence and executive function in Parkinson's disease. Biomed. Res. Int. 2016;2016
    1. Tokic K., Titlic M., Beganovic-Petrovic A., Suljic E., Romac R., Silic S. P300 wave changes in patients with Parkinson's disease. Med. Arch. 2016;70:453–456.
    1. Uysal U., Idiman F., Idiman E., Ozakbas S., Karakas S., Bruce J. Contingent negative variation is associated with cognitive dysfunction and secondary progressive disease course in multiple sclerosis. J. Clin. Neurol. Seoul Korea. 2014;10:296–303.
    1. Van den Bos J.M.A., Menon P., Howells J., Geevasinga N., Kiernan M.C., Vucic S. Physiological processes underlying short interval intracortical facilitation in the human motor cortex. Front. Neurosci. 2018:12.
    1. van Deursen J.A., Vuurman E.F.P.M., Smits L.L., Verhey F.R.J., Riedel W.J. Response speed, contingent negative variation and P300 in Alzheimer's disease and MCI. Brain Cogn. 2009;69:592–599.
    1. Verdoorn T.A., McCarten J.R., Arciniegas D.B., Golden R., Moldauer L., Georgopoulos A., Lewis S., Cassano M., Hemmy L., Orr W., Rojas D.C. Evaluation and tracking of Alzheimer's disease severity using resting-state magnetoencephalography. J. Alzheimers Dis. JAD. 2011;26(Suppl. 3):239–255.
    1. Volpato C., Piccione F., Silvoni S., Cavinato M., Palmieri A., Meneghello F., Birbaumer N. Working memory in amyotrophic lateral sclerosis: auditory event-related potentials and neuropsychological evidence. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2010;27:198–206.
    1. Vucic S., Kiernan M.C. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain J. Neurol. 2006;129:2436–2446.
    1. Vucic S., Nicholson G.A., Kiernan M.C. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain. 2008;131:1540–1550.
    1. Wendel K., Väisänen O., Malmivuo J., Gencer N.G., Vanrumste B., Durka P., Magjarević R., Supek S., Pascu M.L., Fontenelle H., Grave de Peralta Menendez R. EEG/MEG source imaging: methods, challenges, and open issues [WWW Document] Comput. Intell. Neurosci. 2009
    1. Westphal K.P., Heinemann H.A., Grözinger B., Kotchoubey B.J., Diekmann V., Becker W., Kornhuber H.H. Bereitschaftspotential in amyotrophic lateral sclerosis (ALS): lower amplitudes in patients with hyperreflexia (spasticity) Acta Neurol. Scand. 1998;98:15–21.
    1. Yates D. Neurodegenerative disease: Neurodegenerative networking. Nat. Rev. Neurosci. 2012;13:288.
    1. Yener G.G., Leuchter A.F., Jenden D., Read S.L., Cummings J.L., Miller B.L. Quantitative EEG in frontotemporal dementia. Clin. EEG Electroencephalogr. 1996;27:61–68.
    1. Zhang J., Yin X., Zhao L., Evans A.C., Song L., Xie B., Li H., Luo C., Wang J. Regional alterations in cortical thickness and white matter integrity in amyotrophic lateral sclerosis. J. Neurol. 2014;261:412–421.
    1. Zhou J., Greicius M.D., Gennatas E.D., Growdon M.E., Jang J.Y., Rabinovici G.D., Kramer J.H., Weiner M., Miller B.L., Seeley W.W. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain. 2010;133:1352–1367.
    1. Ziemann U., Rothwell J.C., Ridding M.C. Interaction between intracortical inhibition and facilitation in human motor cortex. J. Physiol. 1996;496(Pt 3):873–881.
    1. Ziemann U., Reis J., Schwenkreis P., Rosanova M., Strafella A., Badawy R., Müller-Dahlhaus F. TMS and drugs revisited 2014. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2015;126:1847–1868.

Source: PubMed

3
구독하다