Estimating the potential for dementia prevention through modifiable risk factors elimination in the real-world setting: a population-based study

Elena Rolandi, Daniele Zaccaria, Roberta Vaccaro, Simona Abbondanza, Laura Pettinato, Annalisa Davin, Antonio Guaita, Elena Rolandi, Daniele Zaccaria, Roberta Vaccaro, Simona Abbondanza, Laura Pettinato, Annalisa Davin, Antonio Guaita

Abstract

Background: Preventing dementia onset is one of the global public health priorities: around 35% of dementia cases could be attributable to modifiable risk factors. These estimates relied on secondary data and did not consider the concurrent effect of non-modifiable factors and death. Here, we aimed to estimate the potential reduction of dementia incidence due to modifiable risk factors elimination, controlling for non-modifiable risk factors and for the competing risk of death.

Methods: Participants from the InveCe.Ab population-based prospective cohort (Abbiategrasso, Italy) without a baseline dementia diagnosis and attending at least one follow-up visit were included (N = 1100). Participants underwent multidimensional assessment at baseline and after 2, 4, and 8 years, from November 2009 to January 2019. Modifiable risk factors were low education, obesity, hypertension, diabetes, depression, smoking, physical inactivity, hearing loss, loneliness, heart disease, stroke, head injury, and delirium. Non-modifiable risk factors were age, sex, and APOE ε4 genotype. The primary endpoint was dementia diagnosis within the follow-up period (DSM-IV criteria). We performed competing risk regression models to obtain sub-hazard ratio (SHR) for each exposure, with death as competing risk. The exposures associated with dementia were included in a multivariable model to estimate their independent influence on dementia and the corresponding population attributable fraction (PAF).

Results: Within the study period (mean follow-up, 82.3 months), 111 participants developed dementia (10.1%). In the multivariable model, APOE ε4 (SHR = 1.89, 95% CI 1.22-2.92, p = 0.005), diabetes (SHR = 1.56, 95% CI 1.00-2.39, p = 0.043), heart disease (SHR = 1.56, 95% CI 1.03-2.36, p = 0.037), stroke (SHR = 2.31, 95% CI 1.35-3.95, p = 0.002), and delirium (SHR = 8.70, 95% CI 3.26-23.24, p < 0.001) were independently associated with increased dementia risk. In the present cohort, around 40% of dementia cases could be attributable to preventable comorbid diseases.

Conclusions: APOE ε4, diabetes, heart disease, stroke, and delirium independently increased the risk of late-life dementia, controlling for the competing risk of death. Preventive intervention addressed to these clinical populations could be an effective approach to reduce dementia incidence. Further studies on different population-based cohort are needed to obtain more generalizable findings of the potential of dementia prevention in the real-world setting.

Trial registration: ClinicalTrials.gov, NCT01345110 .

Keywords: Aging; Alzheimer’s disease; Dementia; Dementia prevention; Modifiable risk factors; Population attributable fraction; Public health.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow-chart of case selection

References

    1. Lobo A, Launer LJ, Fratiglioni L, Andersen K, Di Carlo A, Breteler MM, et al. Prevalence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology. 2000;54:S4–9 Available from: .
    1. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13:788–794. doi: 10.1016/S1474-4422(14)70136-X.
    1. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–2734. doi: 10.1016/S0140-6736(17)31363-6.
    1. Ivan CS, Seshadri S, Beiser A, Au R, Kase CS, Kelly-Hayes M, et al. Dementia after stroke: the Framingham Study. Stroke. 2004;35:1264–8. Available from: .
    1. Fong TG, Davis D, Growdon ME, Albuquerque A, Inouye SK. The interface between delirium and dementia in elderly adults. Lancet Neurol. 2015;14:823–832. doi: 10.1016/S1474-4422(15)00101-5.
    1. Rusanen M, Kivipelto M, Levälahti E, Laatikainen T, Tuomilehto J, Soininen H, et al. Heart diseases and long-term risk of dementia and Alzheimer’s disease: a population-based CAIDE study. J Alzheimer’s Dis. 2014;42:183–191. doi: 10.3233/JAD-132363.
    1. Fann JR, Ribe AR, Pedersen HS, Fenger-Grøn M, Christensen J, Benros ME, et al. Long-term risk of dementia among people with traumatic brain injury in Denmark: a population-based observational cohort study. Lancet Psychiatry. 2018;5:424–31. Available from: . .
    1. Berry SD, Ngo L, Samelson EJ, Kiel DP. Competing risk of death: an important consideration in studies of older adults. J Am Geriatr Soc. 2010;58:783–787. doi: 10.1111/j.1532-5415.2010.02767.x.
    1. Guaita A, Colombo M, Vaccaro R, Fossi S, Vitali SF, Forloni G, et al. Brain aging and dementia during the transition from late adulthood to old age: design and methodology of the “Invece.Ab” population-based study. BMC Geriatr. 2013;13:98. doi: 10.1186/1471-2318-13-98.
    1. Wancata J, Alexandrowicz R, Marquart B, Weiss M, Friedrich F. The criterion validity of the geriatric depression scale: a systematic review. Acta Psychiatr Scand. 2006;114:398–410.
    1. Ferretti M, Iulita M, Cavedo E, Chiesa P, Schumacher Dimech A, Santuccione A, et al. Sex differences in Alzheimer disease — the gateway to precision medicine. Nat Rev Neurol. 2018. 10.1038/s41582-018-0032-9.
    1. Vaccaro R, Borrelli P, Abbondanza S, Davin A, Polito L, Colombo M, et al. Subthreshold depression and clinically significant depression in an Italian population of 70–74-year-olds: prevalence and association with perceptions of self. Biomed Res Int. 2017;2017:1–8 Available from: . .
    1. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR). 2000.
    1. Vaccaro R, Zaccaria D, Colombo M, Abbondanza S, Guaita A. Adverse effect of self-reported hearing disability in elderly Italians: results from the InveCe. Ab study. Maturitas. 2019;121:35–40. doi: 10.1016/j.maturitas.2018.12.009.
    1. Jylhä M. Old age and loneliness: cross-sectional and longitudinal analyses in the Tampere longitudinal study on aging. Can J Aging. 2004;23:157–68.
    1. Victor CR, Scambler SJ, Bowling A, Bond J. The prevalence of, and risk factors for, loneliness in later life: a survey of older people in Great Britain. Ageing Soc. 2005;25:357–375. doi: 10.1017/S0144686X04003332.
    1. Dignam JJ, Zhang Q, Kocherginsky M. The use and interpretation of competing risks regression models. Clin Cancer Res. 2012;18:2301-8. .
    1. Noordzij M, Leffondré K, Van Stralen KJ, Zoccali C, Dekker FW, Jager KJ. When do we need competing risks methods for survival analysis in nephrology? Nephrol Dial Transplant. 2013;28:2670–2677. doi: 10.1093/ndt/gft355.
    1. Schuster NA, Hoogendijk EO, Kok AAL, Twisk JWR, Heymans MW. Ignoring competing events in the analysis of survival data may lead to biased results: a nonmathematical illustration of competing risk analysis. J Clin Epidemiol. 2020;122:42–48. doi: 10.1016/j.jclinepi.2020.03.004.
    1. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.
    1. Wolbers M, Koller MT, Witteman JCM, Steyerberg EW. Prognostic models with competing risks methods and application to coronary risk prediction. Epidemiology. 2009;20:555–61.
    1. Austin PC, Lee DS, Fine JP. Introduction to the analysis of survival data in the presence of competing risks. Circulation. 2016;133:601–609. doi: 10.1161/CIRCULATIONAHA.115.017719.
    1. Ritchie CW, Terrera G, Quinn TJ. Dementia trials and dementia tribulations: methodological and analytical challenges in dementia research. Alzheimers Res Ther. 2015;7:31. doi: 10.1186/s13195-015-0113-6.
    1. Newson RB. Attributable and unattributable risks and fractions and other scenario comparisons. Stata J. 2013;13:672–698. doi: 10.1177/1536867X1301300402.
    1. Witlox J, Eurelings LSM, De Jonghe JFM, Kalisvaart KJ, Eikelenboom P, Van Gool WA. Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: a meta-analysis. JAMA. 2010;304:443–451. doi: 10.1001/jama.2010.1013.
    1. Roglic G, Unwin N, Bennett PH, Mathers C, Tuomilehto J, Nag S, et al. The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care. 2005;28:2130–2135. doi: 10.2337/diacare.28.9.2130.
    1. Murray CJL, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet. 1997;349:1269–1276. doi: 10.1016/S0140-6736(96)07493-4.
    1. Mossello E, Tesi F, Di Santo SG, Mazzone A, Torrini M, Cherubini A, et al. Recognition of delirium features in clinical practice: data from the “Delirium Day 2015” National Survey. J Am Geriatr Soc. 2018;66:302–308. doi: 10.1111/jgs.15211.
    1. Numan T, van den Boogaard M, Kamper AM, Rood PJT, Peelen LM, Slooter AJC. Recognition of delirium in postoperative elderly patients: a multicenter study. J Am Geriatr Soc. 2017;65:1932–1938. doi: 10.1111/jgs.14933.
    1. Young J, Murthy L, Westby M, Akunne A, O’Mahony R. Guidelines. Diagnosis, prevention, and management of delirium: summary of NICE guidance. BMJ. 2010;341:247–248. doi: 10.1136/bmj.c3704.
    1. Wahid A, Manek N, Nichols M, Kelly P, Foster C, Webster P, et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta-analysis. J Am Heart Assoc. 2016;5:e002495.
    1. Eijsvogels TMH, George KP, Thompson PD. Cardiovascular benefits and risks across the physical activity continuum. Curr Opin Cardiol. 2016;31:566–571. doi: 10.1097/HCO.0000000000000321.
    1. National Academies of Sciences, Engineering and M . Preventing cognitive decline and dementia: a way forward. Washington, DC: The National Academies Press; 2017.
    1. Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: a review. Curr. Hypertens. Rep. Current Medicine Group LLC 1; 2017;19:24.
    1. Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement. 2015;11:1–9. doi: 10.1016/j.jalz.2015.05.016.
    1. Mayer F, Di Pucchio A, Lacorte E, Bacigalupo I, Marzolini F, Ferrante G, et al. An estimate of attributable cases of Alzheimer disease and vascular dementia due to modifiable risk factors: the impact of primary prevention in Europe and in Italy. Dement Geriatr Cogn Dis Extra. 2018;8:60–71. doi: 10.1159/000487079.
    1. Ritchie K, Carrière I, Ritchie CW, Berr C, Artero S, Ancelin ML. Designing prevention programmes to reduce incidence of dementia: prospective cohort study of modifiable risk factors. BMJ. 2010;341:336. doi: 10.1136/bmj.c3885.
    1. Hill AB. The environment and disease: association or causation? J R Soc Med. 1965;.
    1. Prince M, Wimo A, Guerchet M, Gemma-Claire A, Wu Y-T, Prina M. World Alzheimer Report 2015: The Global Impact of Dementia - an analysis of prevalence, incidence, cost and trends. 2015. p. 84.

Source: PubMed

3
구독하다