Angiotensin converting enzyme inhibition increases ADMA concentration in patients on maintenance hemodialysis--a randomized cross-over study

Jorge L Gamboa, Mias Pretorius, Katie C Sprinkel, Nancy J Brown, T Alp Ikizler, Jorge L Gamboa, Mias Pretorius, Katie C Sprinkel, Nancy J Brown, T Alp Ikizler

Abstract

Background: Endothelial dysfunction occurs in patients with end-stage renal disease (ESRD) and is associated with increased cardiovascular morbidity and mortality. Asymmetric dimethylarginine (ADMA) contributes to endothelial dysfunction in ESRD. In the general population, angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) decrease ADMA levels, but no study has compared the effect of these drugs in patients with ESRD on maintenance hemodialysis (MHD).

Methods: We evaluated the effect of 1-week treatment with ramipril (5 mg/d), valsartan (160 mg/d), and placebo on ADMA levels in 15 patients on MHD in a double-blind, placebo-controlled, three x three cross-over study.

Results: We found that ADMA levels were increased at baseline and throughout the dialysis session during ramipril treatment (p < 0.001 compared to both, placebo and valsartan). Ramipril did not increase ADMA levels in a study of patients without ESRD, suggesting that factors related to ESRD or hemodialysis contribute to the ACE inhibitor-induced increase in ADMA. We have previously shown that ACE inhibition increases bradykinin (BK) levels during hemodialysis. We therefore evaluated the effect of bradykinin on ADMA production in A549 cells; a cell line that expresses BK receptors. Incubation with BK increased intracellular ADMA concentration through BK B2-receptor stimulation.

Conclusion: These data indicate that short-term ACE inhibition increases ADMA in patients on MHD whereas ARBs do not. In vitro studies further suggest that this may occur through BK-mediated increase in ADMA production during ACE inhibition.

Trial registration: Clinicaltrials.gov NCT00732069 August 6 2008 and NCT00607672 February 4 2008.

Figures

Fig. 1
Fig. 1
Effect of 1 week treatment with ramipril, valsartan and placebo on (a) asymmetric dimethylarginine (ADMA) and (b) symmetric dimethylarginine in patients with end-stage renal disease during hemodialysis
Fig. 2
Fig. 2
Effect of 1 week treatment with ramipril, valsartan and placebo on (a) arginine levels and (b) ratios of arginine- to-asymmetric dimethylarginine (ADMA) in patients with end-stage renal disease during hemodialysis
Fig. 3
Fig. 3
Effect of 1 week treatment with ramipril, candesartan and placebo on (a) asymmetric dimethylarginine (ADMA), b symmetric dimethylarginine, c arginine levels, and (d) arginine-to-asymmetric dimethylarginine (ADMA) ratios in patients with no history of end-stage renal disease
Fig. 4
Fig. 4
Effect of bradykinin (BK, 20nM) incubation on intracellular asymmetric dimethylarginine (ADMA) levels in human adenocarcinoma cell (A549). HOE stands for HOE-140, a bradykinin B2 receptor inhibitor (1 μM). Bradykinin B1 inhibition (B1 inh) was performed using the B1 receptor antagonist Lys (Des-Arg9-Leu8) BK (1 μM). Bars represent mean ± standard deviation

References

    1. Foley RN, Parfrey PS, Sarnak MJ. Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol. 1998;9:S16–S23.
    1. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32:S112–S119. doi: 10.1053/ajkd.1998.v32.pm9820470.
    1. Sarnak MJ, Levey AS. Epidemiology of Cardiac Disease in Dialysis Patients. Semin Dial. 1999;12:69–76. doi: 10.1046/j.1525-139X.1999.00006.x.
    1. Himmelfarb J. Uremic toxicity, oxidative stress, and hemodialysis as renal replacement therapy. Semin Dial. 2009;22:636–643. doi: 10.1111/j.1525-139X.2009.00659.x.
    1. Gamboa JL, Pretorius M, Todd-Tzanetos DR, Luther JM, Yu C, Ikizler TA, et al. Comparative Effects of Angiotensin-Converting Enzyme Inhibition and Angiotensin-Receptor Blockade on Inflammation during Hemodialysis. J Am Soc Nephrol. 2012;23:334–342. doi: 10.1681/ASN.2011030287.
    1. Ikizler TA, Morrow JD, Roberts LJ, Evanson JA, Becker B, Hakim RM, et al. Plasma F2-isoprostane levels are elevated in chronic hemodialysis patients. Clin Nephrol. 2002;58:190–197. doi: 10.5414/CNP58190.
    1. Handelman GJ, Walter MF, Adhikarla R, Gross J, Dallal GE, Levin NW, et al. Elevated plasma F2-isoprostanes in patients on long-term hemodialysis. Kidney Int. 2001;59:1960–1966. doi: 10.1046/j.1523-1755.2001.0590051960.x.
    1. Stenvinkel P. Interactions between inflammation, oxidative stress, and endothelial dysfunction in end-stage renal disease. J Ren Nutr. 2003;13:144–148. doi: 10.1053/jren.2003.50018.
    1. Zoccali C, Bode-Böger SM, Mallamaci F, Benedetto FA, Tripepi G, Malatino LS, et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet. 2001;358:2113–2117. doi: 10.1016/S0140-6736(01)07217-8.
    1. Zoccali C, Benedetto FA, Maas R, Mallamaci F, Tripepi G, Salvatore Malatino L, et al. Asymmetric Dimethylarginine, C-Reactive Protein, and Carotid Intima-Media Thickness in End-Stage Renal Disease. J Am Soc Nephrol. 2002;13:490–496. doi: 10.1097/01.ASN.0000032548.18973.0F.
    1. Leone A, Moncada S, Vallance P, Calver A, Collier J. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992;339:572–575. doi: 10.1016/0140-6736(92)90865-Z.
    1. Closs EI, Basha FZ, Habermeier A, Förstermann U. Interference of L-Arginine Analogues with L-Arginine Transport Mediated by the y + Carrier hCAT-2B. Nitric Oxide. 1997;1:65–73. doi: 10.1006/niox.1996.0106.
    1. Schwedhelm E, Boger RH. The role of asymmetric and symmetric dimethylarginines in renal disease. Nat Rev Nephrol. 2011;7:275–285. doi: 10.1038/nrneph.2011.31.
    1. Pope AJ, Karuppiah K, Cardounel AJ. Role of the PRMTΓÇôDDAHΓÇôADMA axis in the regulation of endothelial nitric oxide production. Pharmacol Res. 2009;60:461–465. doi: 10.1016/j.phrs.2009.07.016.
    1. Rodionov RN, Jarzebska N, Weiss N, Lentz SR. AGXT2: a promiscuous aminotransferase. Trends Pharmacol Sci. 2014;35:575–582. doi: 10.1016/j.tips.2014.09.005.
    1. Anderstam B, Katzarski K, Bergström J. Serum levels of NG, NG-dimethyl-L-arginine, a potential endogenous nitric oxide inhibitor in dialysis patients. J Am Soc Nephrol. 1997;8:1437–1442.
    1. Veresh Z, Racz A, Lotz G, Koller A. ADMA Impairs Nitric Oxide−Mediated Arteriolar Function Due to Increased Superoxide Production by Angiotensin II−NAD(P)H Oxidase Pathway. Hypertension. 2008;52:960–966. doi: 10.1161/HYPERTENSIONAHA.108.116731.
    1. Luo Z, Teerlink T, Griendling K, Aslam S, Welch WJ, Wilcox CS. Angiotensin II and NADPH Oxidase Increase ADMA in Vascular Smooth Muscle Cells. Hypertension. 2010;56:498–504. doi: 10.1161/HYPERTENSIONAHA.110.152959.
    1. Ito A, Egashira K, Narishige T, Muramatsu K, Takeshita A. Renin-Angiotensin System is Involved in the Mechanism of Increased Serum Asymmetric Dimethylarginine in Essential Hypertension. Jpn Circ J. 2001;65:775–778. doi: 10.1253/jcj.65.775.
    1. Abbott K, Trespalacios F, Agodoa L, Ahuja T. HIVAN and medication use in chronic dialysis patients in the United States: analysis of the USRDS DMMS Wave 2 study. BMC Nephrol. 2003;4:5. doi: 10.1186/1471-2369-4-5.
    1. Napoli C, Sica V, de Nigris F, Pignalosa O, Condorelli M, Ignarro LJ, et al. Sulfhydryl angiotensin-converting enzyme inhibition induces sustained reduction of systemic oxidative stress and improves the nitric oxide pathway in patients with essential hypertension. Am Heart J. 2004;148:172. doi: 10.1016/j.ahj.2004.03.025.
    1. Willoughby SR, Rajendran S, Chan WP, Procter N, Leslie S, Liberts EA, et al. Ramipril Sensitizes Platelets to Nitric Oxide: Implications for Therapy in High-Risk Patients. J Am Coll Cardiol. 2012;60:887–894. doi: 10.1016/j.jacc.2012.01.066.
    1. Jones B, Kenward MG. Design and Analysis of Crossover Trials. 2. Boca Raton: CRC Press LLC; 2003.
    1. de Jong S, Teerlink T. Analysis of asymmetric dimethylarginine in plasma by HPLC using a monolithic column. Anal Biochem. 2006;353:287–289. doi: 10.1016/j.ab.2006.03.010.
    1. Milne GL, Sanchez SC, Musiek ES, Morrow JD. Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nat Protocols. 2007;2:221–226. doi: 10.1038/nprot.2006.375.
    1. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A. 1990;87:9383–9387. doi: 10.1073/pnas.87.23.9383.
    1. Billings FT, Balaguer JM, Yu C, Wright P, Petracek MR, Byrne JG, et al. Comparative Effects of Angiotensin Receptor Blockade and ACE Inhibition on the Fibrinolytic and Inflammatory Responses to Cardiopulmonary Bypass. Clin Pharmacol Ther. 2012;91:1065–1073. doi: 10.1038/clpt.2011.356.
    1. Zoccali C, Mallamaci F, Maas R, Benedetto FA, Tripepi G, Malatino LS, et al. Left ventricular hypertrophy, cardiac remodeling and asymmetric dimethylarginine (ADMA) in hemodialysis patients. Kidney Int. 2002;62:339–345. doi: 10.1046/j.1523-1755.2002.00437.x.
    1. Kumagai H, Sakurai M, Takita T, Maruyama Y, Uno S, Ikegaya N, et al. Association of Homocysteine and Asymmetric Dimethylarginine With Atherosclerosis and Cardiovascular Events in Maintenance Hemodialysis Patients. Am J Kidney Dis. 2006;48:797–805. doi: 10.1053/j.ajkd.2006.08.003.
    1. Bode-Böger SM, Scalera F, Ignarro LJ. The l-arginine paradox: Importance of the l-arginine/asymmetrical dimethylarginine ratio. Pharmacol Ther. 2007;114:295–306. doi: 10.1016/j.pharmthera.2007.03.002.
    1. Notsu Y, Yano S, Shibata H, Nagai A, Nabika T. Plasma arginine/ADMA ratio as a sensitive risk marker for atherosclerosis: Shimane CoHRE study. Atherosclerosis. 2015;239:61–66. doi: 10.1016/j.atherosclerosis.2014.12.030.
    1. Pizzarelli F, Maas R, Dattolo P, Tripepi G, Michelassi S, D’Arrigo G, et al. Asymmetric dimethylarginine predicts survival in the elderly. Age. 2013;35:2465–2475. doi: 10.1007/s11357-013-9523-1.
    1. Böger RH, Sullivan LM, Schwedhelm E, Wang TJ, Maas R, Benjamin EJ, et al. Plasma Asymmetric Dimethylarginine and Incidence of Cardiovascular Disease and Death in the Community. Circulation. 2009;119:1592–1600. doi: 10.1161/CIRCULATIONAHA.108.838268.
    1. Davignon J, Ganz P. Role of Endothelial Dysfunction in Atherosclerosis. Circulation. 2004;109:27–32. doi: 10.1161/01.CIR.0000115644.35804.8B.
    1. Young CN, Fisher JP, Gallagher KM, Whaley-Connell A, Chaudhary K, Victor RG, et al. Inhibition of nitric oxide synthase evokes central sympatho-excitation in healthy humans. J Physiol. 2009;587:4977–4986. doi: 10.1113/jphysiol.2009.177204.
    1. Mallamaci F, Tripepi G, Maas R, Malatino L, Böger R, Zoccali C. Analysis of the Relationship between Norepinephrine and Asymmetric Dimethyl Arginine Levels among Patients with End-Stage Renal Disease. J Am Soc Nephrol. 2004;15:435–441. doi: 10.1097/01.ASN.0000106717.58091.F6.
    1. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74:1141–1148. doi: 10.1161/01.RES.74.6.1141.
    1. Pagano PJ, Chanock SJ, Siwik DA, Colucci WS, Clark JK. Angiotensin II Induces p67phox mRNA Expression and NADPH Oxidase Superoxide Generation in Rabbit Aortic Adventitial Fibroblasts. Hypertension. 1998;32:331–337. doi: 10.1161/01.HYP.32.2.331.
    1. Aslam S, Santha T, Leone A, Wilcox C. Effects of amlodipine and valsartan on oxidative stress and plasma methylarginines in end-stage renal disease patients on hemodialysis. Kidney Int. 2006;70:2109–2115.
    1. Osanai T, Saitoh M, Sasaki S, Tomita H, Matsunaga T, Okumura K. Effect of Shear Stress on Asymmetric Dimethylarginine Release From Vascular Endothelial Cells. Hypertension. 2003;42:985–990. doi: 10.1161/01.HYP.0000097805.05108.16.
    1. Swartz SL, Williams GH, Hollenberg NK, Levine L, Dluhy RG, Moore TJ. Captopril-induced Changes in Prostaglandin Production: Relationship to Vascular Responses in Normal Man. J Clin Invest. 1980;65:1257–1264. doi: 10.1172/JCI109788.
    1. Larsen BT, Bubolz AH, Mendoza SA, Pritchard KA, Jr, Gutterman DD. Bradykinin-induced dilation of human coronary arterioles requires NADPH oxidase-derived reactive oxygen species. Arterioscler Thromb Vasc Biol. 2009;29:739–745. doi: 10.1161/ATVBAHA.108.169367.
    1. Wilcox CS. Asymmetric Dimethylarginine and Reactive Oxygen Species: Unwelcome Twin Visitors to the Cardiovascular and Kidney Disease Tables. Hypertension. 2012;59:375–381. doi: 10.1161/HYPERTENSIONAHA.111.187310.
    1. Tripepi G, Raso FM, Sijbrands E, Seck MS, Maas R, Boger R, et al. Inflammation and Asymmetric Dimethylarginine for Predicting Death and Cardiovascular Events in ESRD Patients. Clin J Am Soc Nephrol. 2011;6:1714–1721. doi: 10.2215/CJN.11291210.
    1. Chan KE, Ikizler TA, Gamboa JL, Yu C, Hakim RM, Brown NJ. Combined angiotensin-converting enzyme inhibition and receptor blockade associate with increased risk of cardiovascular death in hemodialysis patients. Kidney Int. 2011;80:978–985. doi: 10.1038/ki.2011.228.
    1. Grooteman MP, Wauters IM, Teerlink T, Twisk JW, Nube MJ. Plasma dimethylarginine levels in chronic hemodialysis patients are independent of the type of dialyzer applied. Blood Purif. 2007;25:281–289. doi: 10.1159/000104868.
    1. Busch M, Fleck C, Wolf G, Stein G. Asymmetrical (ADMA) and symmetrical dimethylarginine (SDMA) as potential risk factors for cardiovascular and renal outcome in chronic kidney disease - possible candidates for paradoxical epidemiology? Amino Acids. 2006;30:225–232. doi: 10.1007/s00726-005-0268-8.

Source: PubMed

3
구독하다