Prevention of post-cardiac surgery vitamin D deficiency in children with congenital heart disease: a pilot feasibility dose evaluation randomized controlled trial

James Dayre McNally, Katie O'Hearn, Dean A Fergusson, Jane Lougheed, Dermot R Doherty, Gyaandeo Maharajh, Hope Weiler, Glenville Jones, Ali Khamessan, Stephanie Redpath, Pavel Geier, Lauralyn McIntyre, Margaret L Lawson, Tara Girolamo, Kusum Menon, Canadian Critical Care Trials Group, James Dayre McNally, Katie O'Hearn, Dean A Fergusson, Jane Lougheed, Dermot R Doherty, Gyaandeo Maharajh, Hope Weiler, Glenville Jones, Ali Khamessan, Stephanie Redpath, Pavel Geier, Lauralyn McIntyre, Margaret L Lawson, Tara Girolamo, Kusum Menon, Canadian Critical Care Trials Group

Abstract

Background: The vast majority of children undergoing cardiac surgery have low vitamin D levels post-operative, which may contribute to greater illness severity and worse clinical outcomes. Prior to the initiation of a large phase III clinical trial focused on clinical outcomes, studies are required to evaluate the feasibility of the study protocol, including whether the proposed dosing regimen can safely prevent post-operative vitamin D deficiency in this high-risk population.

Methods: We conducted a two-arm, double-blind dose evaluation randomized controlled trial in children requiring cardiopulmonary bypass for congenital heart disease. Pre-operatively, participants were randomized to receive cholecalciferol representing usual care (< 1 year = 400 IU/day, > 1 year = 600 IU/day) or a higher dose approximating the Institute of Medicine tolerable upper intake level (< 1 year = 1600 IU/day, > 1 year = 2400 IU/day). The feasibility outcomes were post-operative vitamin D status (primary), vitamin D-related adverse events, accrual rate, study withdrawal rate, blinding, and protocol non-adherence.

Results: Forty-six children were randomized, and five withdrew prior to surgery, leaving 41 children (21 high dose, 20 usual care) in the final analysis. The high dose group had higher 25-hydroxyvitamin D concentrations both intraoperatively (mean difference + 25.9 nmol/L; 95% CI 8.3-43.5) and post-operatively (mean difference + 17.2 nmol/L; 95% CI 5.5-29.0). Fewer participants receiving high-dose supplementation had post-operative serum 25-hydroxyvitamin D concentrations under 50 nmol/L, compared with usual care (RR 0.31, 95% CI 0.11-0.87). Post-operative vitamin D status was associated with the treatment arm and the number of doses received. There were no cases of hypercalcemia, and no significant adverse events related to vitamin D. While only 75% of the target sample size was recruited (limited funding), the consent rate (83%), accrual rate (1.5 per site month), number of withdrawals (11%), and ability to maintain blinding support feasibility of a larger trial.

Conclusions: Pre-operative daily high-dose supplementation improved vitamin D status pre-operatively and at time of pediatric ICU admission. The protocol for a more definitive trial should limit enrollment of children with at least 30 days between randomization and surgery to allow adequate duration of supplementation or consider a loading dose.

Trial registration: ClinicalTrials.gov, NCT01838447. Registered on April 24, 2013.

Keywords: Cholecalciferol; Congenital heart disease; Critical care; Dose evaluation trial; High-dose; Pediatric intensive care unit; Vitamin D deficiency.

Conflict of interest statement

Competing interestsDr. Khamessan is employed by Euro-Pharm International Canada Inc. Dr. Khamessan and Euro-Pharm International Canada Inc., at the request of the investigative team, developed and prepared the concentrated vitamin D solution used in the study.

© The Author(s) 2020.

Figures

Fig. 1
Fig. 1
CONSORT diagram. CPB, cardiopulmonary bypass
Fig. 2
Fig. 2
Box plot of post-operative 25OHD concentrations in the high-dose and usual care arm
Fig. 3
Fig. 3
Evaluation of hypercalciuria. *Numbers add up to more than 7 because one patient had both a clinical and discharge ultrasound. AB US, abdominal ultrasound; ca:cr, calcium to creatinine ratio; POD1, post-operative day 1
Fig. 4
Fig. 4
Immediate post-operative 25OHD concentrations by cumulative study drug doses
Fig. 5
Fig. 5
Total duration of mechanical ventilation by treatment arm

References

    1. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–1900. doi: 10.1016/S0735-1097(02)01886-7.
    1. Brix-Christensen V. The systemic inflammatory response after cardiac surgery with cardiopulmonary bypass in children. Acta Anaesthesiol Scand. 2001;45(6):671–679. doi: 10.1034/j.1399-6576.2001.045006671.x.
    1. Gazit AZ, Huddleston CB, Checchia PA, Fehr J, Pezzella AT. Care of the pediatric cardiac surgery patient--part 1. Curr Probl Surg. 2010;47(3):185–250. doi: 10.1067/j.cpsurg.2009.11.006.
    1. McEwan A. Aspects of bleeding after cardiac surgery in children. Paediatr Anaesth. 2007;17(12):1126–1133. doi: 10.1111/j.1460-9592.2007.02265.x.
    1. Dyke PC, Yates AR, Cua CL. Increased calcium supplementation is associated with morbidity and mortality in the infant postoperative cardiac patient*. Pediatr Crit Care Med. 2007;8(3):254–257. doi: 10.1097/01.PCC.0000260784.30919.9E.
    1. Amrein K, Christopher KB, McNally JD. Understanding vitamin D deficiency in intensive care patients. Intensive Care Med. 2015;41(11):1961–1964. doi: 10.1007/s00134-015-3937-4.
    1. de Haan K, Groeneveld AB, de Geus HR, Egal M, Struijs A. Vitamin D deficiency as a risk factor for infection, sepsis and mortality in the critically ill: systematic review and meta-analysis. Crit Care. 2014;18(6):660. doi: 10.1186/s13054-014-0660-4.
    1. Zhang YP, Wan YD, Sun TW, Kan QC, Wang LX. Association between vitamin D deficiency and mortality in critically ill adult patients: a meta-analysis of cohort studies. Crit Care. 2014;18(6):684. doi: 10.1186/s13054-014-0684-9.
    1. McNally JD, Nama N, O’Hearn K, Sampson M, Amrein K, Iliriani K, et al. Vitamin D deficiency in critically ill children: a systematic review and meta-analysis. Crit Care. 2017;21(1):287. doi: 10.1186/s13054-017-1875-y.
    1. Bustos BR, Rodriguez-Nunez I, Pena Zavala R, Soto GG. Vitamin D deficiency in children admitted to the paediatric intensive care unit. Rev Chil Pediatr. 2016;87(6):480–486. doi: 10.1016/j.rchipe.2016.05.008.
    1. McNally JD, Menon K, Chakraborty P, Fisher L, Williams KA, Al-Dirbashi OY, et al. The association of vitamin D status with pediatric critical illness. Pediatrics. 2012;130(3):429–436. doi: 10.1542/peds.2011-3059.
    1. Onwuneme C, Carroll A, Doherty D, Bruell H, Segurado R, Kilbane M, et al. Inadequate vitamin D levels are associated with culture positive sepsis and poor outcomes in paediatric intensive care. Acta Paediatr. 2015;104(10):e433–e438. doi: 10.1111/apa.13090.
    1. Madden K, Feldman HA, Smith EM, Gordon CM, Keisling SM, Sullivan RM, et al. Vitamin D deficiency in critically ill children. Pediatrics. 2012;130(3):421–428. doi: 10.1542/peds.2011-3328.
    1. Graham EM, Taylor SN, Zyblewski SC, Wolf B, Bradley SM, Hollis BW, et al. Vitamin D status in neonates undergoing cardiac operations: relationship to cardiopulmonary bypass and association with outcomes. J Pediatr. 2013;162(4):823–826. doi: 10.1016/j.jpeds.2012.10.013.
    1. McNally JD, Menon K, Chakraborty P, Fisher L, Williams KA, Al-Dirbashi OY, et al. Impact of anesthesia and surgery for congenital heart disease on the vitamin d status of infants and children: a prospective longitudinal study. Anesthesiology. 2013;119(1):71–80. doi: 10.1097/ALN.0b013e31828ce817.
    1. Abou Zahr R, Faustino EVS, Carpenter T, Kirshbom P, Hall EK, Fahey JT, et al. Vitamin D status after cardiopulmonary bypass in children with congenital heart disease. J Intensive Care Med. 2017;32(8):508–513. doi: 10.1177/0885066616652077.
    1. Dohain AM, Almogati J, Al-Radi OO, Elassal AA, Zaher ZF, Fatani TH, et al. Serum vitamin D status following pediatric cardiac surgery and association with clinical outcome. Eur J Pediatr. 2020;179(4):635–643. doi: 10.1007/s00431-019-03538-x.
    1. Wagner CL, Greer FR. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics. 2008;122(5):1142–1152. doi: 10.1542/peds.2008-1862.
    1. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–58. doi: 10.1210/jc.2010-2704.
    1. Godel JC. Vitamin D supplementation: recommendations for Canadian mothers and infants. Paediatr Child Health. 2007;12(7):583–589. doi: 10.1093/pch/12.7.583.
    1. Krishnan A, Ochola J, Mundy J, Jones M, Kruger P, Duncan E, et al. Acute fluid shifts influence the assessment of serum vitamin D status in critically ill patients. Crit Care. 2010;14(6):R216. doi: 10.1186/cc9341.
    1. Han JE, Jones JL, Tangpricha V, Brown MA, Brown LA, Hao L, et al. High dose vitamin D administration in ventilated intensive care unit patients: a pilot double blind randomized controlled trial. J Clin Trans Endo. 2016;4:59–65.
    1. Amrein K, Schnedl C, Holl A, Riedl R, Christopher KB, Pachler C, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA. 2014;312(15):1520–1530. doi: 10.1001/jama.2014.13204.
    1. National Heart L, Blood Institute PCTN. Ginde AA, Brower RG, Caterino JM, Finck L, et al. Early high-dose vitamin D3 for critically ill, vitamin D-deficient patients. N Engl J Med. 2019;381(26):2529–2540. doi: 10.1056/NEJMoa1911124.
    1. Amrein K, Parekh D, Westphal S, Preiser JC, Berghold A, Riedl R, et al. Effect of high-dose vitamin D3 on 28-day mortality in adult critically ill patients with severe vitamin D deficiency: a study protocol of a multicentre, placebo-controlled double-blind phase III RCT (the VITDALIZE study) BMJ Open. 2019;9(11):e031083. doi: 10.1136/bmjopen-2019-031083.
    1. Gottschlich MM, Mayes T, Khoury J, Kagan RJ. Clinical trial of vitamin D2 vs D3 supplementation in critically ill pediatric burn patients. JPEN J Parenter Enteral Nutr. 2017;41(3):412–421. doi: 10.1177/0148607115587948.
    1. Sahu MK, Bipin C, Niraghatam HV, Karanjkar A, Singh SP, P R, et al. Vitamin D deficiency and its response to supplementation as “stoss therapy” in children with cyanotic congenital heart disease undergoing open heart surgery. J Cardiac Crit Care. 2019;03(01):17–23. doi: 10.1055/s-0039-1696910.
    1. Gallo S, Comeau K, Vanstone C, Agellon S, Sharma A, Jones G, et al. Effect of different dosages of oral vitamin D supplementation on vitamin D status in healthy, breastfed infants: a randomized trial. JAMA. 2013;309(17):1785–1792. doi: 10.1001/jama.2013.3404.
    1. Holmlund-Suila E, Viljakainen H, Hytinantti T, Lamberg-Allardt C, Andersson S, Mäkitie O. High-dose vitamin d intervention in infants--effects on vitamin d status, calcium homeostasis, and bone strength. J Clin Endocrinol Metab. 2012;97(11):4139–4147. doi: 10.1210/jc.2012-1575.
    1. Thabane L, Hopewell S, Lancaster GA, Bond CM, Coleman CL, Campbell MJ, et al. Methods and processes for development of a CONSORT extension for reporting pilot randomized controlled trials. Pilot Feasibility Stud. 2016;2:25. doi: 10.1186/s40814-016-0065-z.
    1. Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ. 2016;355:i5239. doi: 10.1136/bmj.i5239.
    1. McNally JD, O’Hearn K, Lawson ML, Maharajh G, Geier P, Weiler H, et al. Prevention of vitamin D deficiency in children following cardiac surgery: study protocol for a randomized controlled trial. Trials. 2015;16:402. doi: 10.1186/s13063-015-0922-8.
    1. Kaufmann M, Gallagher JC, Peacock M, Schlingmann KP, Konrad M, DeLuca HF, et al. Clinical utility of simultaneous quantitation of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D by LC-MS/MS involving derivatization with DMEQ-TAD. J Clin Endocrinol Metab. 2014;99(7):2567–2574. doi: 10.1210/jc.2013-4388.
    1. Pollack MM, Patel KM, Ruttimann UE. The Pediatric Risk of Mortality III--Acute Physiology Score (PRISM III-APS): a method of assessing physiologic instability for pediatric intensive care unit patients. J Pediatr. 1997;131(4):575–581. doi: 10.1016/S0022-3476(97)70065-9.
    1. Wandrup J. Critical analytical and clinical aspects of ionized calcium in neonates. Clin Chem. 1989;35(10):2027–2033. doi: 10.1093/clinchem/35.10.2027.
    1. Loughead JL, Mimouni F, Tsang RC. Serum ionized calcium concentrations in normal neonates. Am J Dis Child. 1988;142(5):516–518.
    1. Roberts KE. Pediatric fluid and electrolyte balance: critical care case studies. Crit Care Nurs Clin North Am. 2005;17(4):361–373. doi: 10.1016/j.ccell.2005.07.006.
    1. Nama N, Menon K, Iliriani K, Pojsupap S, Sampson M, O’Hearn K, et al. A systematic review of pediatric clinical trials of high dose vitamin D. PeerJ. 2016;4:e1701. doi: 10.7717/peerj.1701.
    1. Gimpel C, Krause A, Franck P, Krueger M, von Schnakenburg C. Exposure to furosemide as the strongest risk factor for nephrocalcinosis in preterm infants. Pediatrics Int. 2010;52(1):51–56. doi: 10.1111/j.1442-200X.2009.02886.x.
    1. Pierpont ME, Basson CT, Benson DW, Jr, Gelb BD, Giglia TM, Goldmuntz E, et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115(23):3015–3038. doi: 10.1161/CIRCULATIONAHA.106.183056.
    1. McNally JD, Doherty DR, Lawson ML, Al-Dirbashi OY, Chakraborty P, Ramsay T, et al. The relationship between vitamin D status and adrenal insufficiency in critically ill children. J Clin Endocrinol Metab. 2013;98(5):E877–E881. doi: 10.1210/jc.2013-1126.
    1. McNally JD, Iliriani K, Pojsupap S, Sampson M, O’Hearn K, McIntyre L, et al. Rapid normalization of vitamin D levels: a meta-analysis. Pediatrics. 2015;135(1):e152–e166. doi: 10.1542/peds.2014-1703.
    1. Agus MS, Steil GM, Wypij D, Costello JM, Laussen PC, Langer M, et al. Tight glycemic control versus standard care after pediatric cardiac surgery. N Engl J Med. 2012;367(13):1208–1219. doi: 10.1056/NEJMoa1206044.
    1. Portman MA, Slee A, Olson AK, Cohen G, Karl T, Tong E, et al. Triiodothyronine Supplementation in Infants and Children Undergoing Cardiopulmonary Bypass (TRICC): a multicenter placebo-controlled randomized trial: age analysis. Circulation. 2010;122(11 Suppl):S224–S233. doi: 10.1161/CIRCULATIONAHA.109.926394.
    1. Landoni G, Comis M, Conte M, Finco G, Mucchetti M, Paternoster G, et al. Mortality in multicenter critical care trials: an analysis of interventions with a significant effect. Crit Care Med. 2015;43(8):1559–1568. doi: 10.1097/CCM.0000000000000974.
    1. Kari JA, Baghdadi OT, El-Desoky S. Is high-dose cholecalciferol justified in children with chronic kidney disease who failed low-dose maintenance therapy? Pediatr Nephrol. 2013;28(6):933–937. doi: 10.1007/s00467-012-2407-2.
    1. Thacher TD, Fischer PR, Obadofin MO, Ma L, Singh RJ, Pettifor JM. Comparison of metabolism of vitamins D2 and D3 in children with nutritional rickets. J Bone Miner Res Off J Am Soc Bone Miner Res. 2010;25(9):1988–1995. doi: 10.1002/jbmr.99.
    1. Manaseki-Holland S, Qader G, Isaq Masher M, Bruce J, Zulf Mughal M, Chandramohan D, et al. Effects of vitamin D supplementation to children diagnosed with pneumonia in Kabul: a randomised controlled trial. Tropical Med Int Health. 2010;15(10):1148–1155. doi: 10.1111/j.1365-3156.2010.02578.x.
    1. Shedeed SA. Vitamin D supplementation in infants with chronic congestive heart failure. Pediatr Cardiol. 2012;33(5):713–719. doi: 10.1007/s00246-012-0199-6.
    1. Putzu A, Belletti A, Cassina T, Clivio S, Monti G, Zangrillo A, et al. Vitamin D and outcomes in adult critically ill patients. A systematic review and meta-analysis of randomized trials. J Crit Care. 2017;38:109–114. doi: 10.1016/j.jcrc.2016.10.029.
    1. Langlois PL, Szwec C, D’Aragon F, Heyland DK, Manzanares W. Vitamin D supplementation in the critically ill: a systematic review and meta-analysis. Clin Nutr. 2018;37(4):1238–1246. doi: 10.1016/j.clnu.2017.05.006.
    1. Weng H, Li JG, Mao Z, Zeng XT. Randomised trials of vitamin D3 for critically ill patients in adults: systematic review and meta-analysis with trial sequential analysis. Intensive Care Med. 2017;43(2):277–278. doi: 10.1007/s00134-016-4591-1.
    1. Mildh L, Pettila V, Sairanen H, Rautiainen P. Predictive value of paediatric risk of mortality score and risk adjustment for congenital heart surgery score after paediatric open-heart surgery. Interact Cardiovasc Thorac Surg. 2007;6(5):628–631. doi: 10.1510/icvts.2007.157917.

Source: PubMed

3
구독하다