Impact of semaglutide on high-sensitivity C-reactive protein: exploratory patient-level analyses of SUSTAIN and PIONEER randomized clinical trials

Ofri Mosenzon, Matthew S Capehorn, Alessandra De Remigis, Søren Rasmussen, Petra Weimers, Julio Rosenstock, Ofri Mosenzon, Matthew S Capehorn, Alessandra De Remigis, Søren Rasmussen, Petra Weimers, Julio Rosenstock

Abstract

Background: Exploratory analysis to determine the effect of semaglutide versus comparators on high-sensitivity C-reactive protein (hsCRP) in subjects with type 2 diabetes.

Methods: Trials of once-weekly subcutaneous (SUSTAIN 3) and once-daily oral (PIONEER 1, 2, 5) semaglutide with hsCRP data were analyzed. Subjects with type 2 diabetes (N = 2482) received semaglutide (n = 1328) or comparators (placebo, n = 339; exenatide extended-release, n = 405; empagliflozin, n = 410). hsCRP ratio to baseline at end-of-treatment was analyzed overall, by clinical cutoff (< 1.0, ≥ 1.0 to ≤ 3.0, or > 3.0 mg/L), by tertile, and by estimated glomerular filtration rate in PIONEER 5 (a trial which was conducted in a population with type 2 diabetes and chronic kidney disease [CKD]). Mediation analyses assessed the effect of change in glycated hemoglobin (HbA1c) and/or change in body weight (BW) on hsCRP reductions.

Results: Geometric mean baseline hsCRP was similar across trials (range 2.7-3.0 mg/L). Semaglutide reduced hsCRP levels by clinical cutoffs and tertiles from baseline to end-of-treatment in all trials versus comparators (estimated treatment ratios [ETRs] versus comparators: 0.70-0.76; p < 0.01) except versus placebo in PIONEER 5 (ETR [95% CI]: 0.83 [0.67-1.03]; p > 0.05). The effect of semaglutide on hsCRP was partially mediated (20.6-61.8%) by change in HbA1c and BW.

Conclusions: Semaglutide reduced hsCRP ratios-to-baseline versus comparators in subjects with type 2 diabetes (not significant with CKD). This effect was partially mediated via reductions in HbA1c and BW and potentially by a direct effect of semaglutide. Semaglutide appears to have an anti-inflammatory effect, which is being further investigated in ongoing trials.

Trial registrations: ClinicalTrials.gov identifiers: NCT01885208 (first registered June 2013), NCT02906930 (first registered September 2016), NCT02863328 (first registered August 2016), NCT02827708 (first registered July 2016).

Keywords: Body weight; Chronic kidney disease; GLP-1RAs; HbA1c; High-sensitivity C-reactive protein; Inflammation; PIONEER; SUSTAIN; Semaglutide; Type 2 diabetes.

Conflict of interest statement

OM reports personal fees for advisory board consultancy and speaker’s bureau from AstraZeneca, Boehringer Ingelheim, Eli Lilly, MSD, Novo Nordisk, and Sanofi; and research grant support from AstraZeneca and Novo Nordisk. MC reports being a partner at Clifton Medical Centre, a director at RIO Weight Management, Ltd, and a consultant for LighterLife and McDonald’s; he also reports research funding from Abbott, Boehringer Ingelheim/Lilly Alliance, Janssen, MSD, and Novo Nordisk; advisory board consultancy, consultancy and honoraria from Abbott, Boehringer Ingelheim/Lilly Alliance, and Novo Nordisk; and meeting support from Boehringer Ingelheim/Lilly Alliance and Novo Nordisk. ADR, SR, and PW are full-time employees of Novo Nordisk; SR also owns shares in Novo Nordisk. JR reports research funding from Applied Therapeutics Inc., Boehringer Ingelheim, Eli Lilly, Genentech, GlaxoSmithKline, Hanmi, Intarcia, Janssen, Lexicon, Merck, Metacrine, Novo Nordisk, Novartis, Oramed, Pfizer, and Sanofi; and advisory board consultancy, consultancy, and honoraria from Applied Therapeutics Inc., Boehringer Ingelheim, Eli Lilly, Hanmi, Intarcia, Janssen, Novo Nordisk, Oramed, Sanofi, and Zealand.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Ratios to baseline at end-of-treatment for hsCRP with semaglutide and comparators by trial. ‘On-treatment without rescue medication’ data from the full analysis set. Ratios to baseline were analyzed using a mixed model for repeated measurements with treatment as categorical fixed effect and baseline hsCRP value (log-transformed) as covariate, all nested within visit, and an unstructured residual covariance matrix on log-transformed values. CI confidence interval; exenatide ER exenatide extended-release; ETR estimated treatment ratio; hsCRP high-sensitivity C-reactive protein; N number of subjects with available hsCRP data; s.c. subcutaneous
Fig. 2
Fig. 2
Ratio to baseline at end-of-treatment for hsCRP by trial according to clinical cutoffs. Panel (a) shows SUSTAIN 3 data, panel (b) PIONEER 1 data, panel (c) PIONEER 2 data, and panel (d) PIONEER 5 data. ‘On-treatment without rescue medication’ data from the full analysis set. Ratios to baseline were analyzed using a mixed model for repeated measurements with treatment by hsCRP groups as categorical fixed effects and baseline hsCRP value (log-transformed) as covariate, all nested within visit, and an unstructured residual covariance matrix on log-transformed values. Clinical cut-offs used in this analysis were  3.0 mg/L. CI confidence interval; ETR estimated treatment ratio; exenatide ER exenatide extended-release; hsCRP high-sensitivity C-reactive protein; N number of subjects with available hsCRP data; s.c. subcutaneous
Fig. 2
Fig. 2
Ratio to baseline at end-of-treatment for hsCRP by trial according to clinical cutoffs. Panel (a) shows SUSTAIN 3 data, panel (b) PIONEER 1 data, panel (c) PIONEER 2 data, and panel (d) PIONEER 5 data. ‘On-treatment without rescue medication’ data from the full analysis set. Ratios to baseline were analyzed using a mixed model for repeated measurements with treatment by hsCRP groups as categorical fixed effects and baseline hsCRP value (log-transformed) as covariate, all nested within visit, and an unstructured residual covariance matrix on log-transformed values. Clinical cut-offs used in this analysis were  3.0 mg/L. CI confidence interval; ETR estimated treatment ratio; exenatide ER exenatide extended-release; hsCRP high-sensitivity C-reactive protein; N number of subjects with available hsCRP data; s.c. subcutaneous
Fig. 3
Fig. 3
Mediation of hsCRP by change in HbA1c and/or body weight. Panel (a) shows mediation of hsCRP by HbA1c, panel (b) by body weight, and panel (c) by HbA1c and body weight combined, all according to trial and with pooled semaglutide arms versus comparators. The indirect effect is the effect of semaglutide versus comparator on change in hsCRP that was caused by its effect through change on HbA1c and/or BW. The direct effect is the effect of semaglutide versus comparator on change in hsCRP independent of change in HbA1c and/or BW. The total effect was calculated by adding the indirect effect to the direct effect. The proportion mediated was calculated by dividing the indirect effect by the total effect × 100. Data from the ‘on-treatment without rescue medication’ period. Mediation was analyzed with mixed models for repeated measurements, adjusted for relevant mediators at baseline: HbA1c (panel a), BW (panel b), BW and HbA1c (panel c); and furthermore adjusted for additional covariates at baseline: log(hsCRP), age, sex, eGFR (Chronic Kidney Disease–Epidemiology Collaboration 2009), body mass index, statins (yes/no), insulin treatment (PIONEER 5 analyses only), metformin treatment (SUSTAIN 3 and PIONEER 5 analyses only), and HbA1c (panel b only). Mediator data were only taken from the visits where hsCRP was assessed for estimation of the direct effect. BW body weight; CI confidence interval; eGFR estimated glomerular filtration rate; HbA1c glycated hemoglobin; hsCRP high-sensitivity C-reactive protein

References

    1. Masters SL, Latz E, O'Neill LA. The inflammasome in atherosclerosis and type 2 diabetes. Sci Transl Med. 2011;3:81ps17. doi: 10.1126/scitranslmed.3001902.
    1. Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol. 2019;14:50–59. doi: 10.15420/ecr.2018.33.1.
    1. Baldassarre MPA, Andersen A, Consoli A, Knop FK, Vilsbøll T. Cardiovascular biomarkers in clinical studies of type 2 diabetes. Diabetes Obes Metab. 2018;20:1350–1360. doi: 10.1111/dom.13247.
    1. Bahceci M, Tuzcu A, Ogun C, Canoruc N, Iltimur K, Aslan C. Is serum C-reactive protein concentration correlated with HbA1c and insulin resistance in Type 2 diabetic men with or without coronary heart disease? J Endocrinol Invest. 2005;28:145–150. doi: 10.1007/BF03345357.
    1. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM, Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–2207. doi: 10.1056/NEJMoa0807646.
    1. Kandelouei T, Abbasifard M, Imani D, Aslani S, Razi B, Fasihi M, et al. Effect of statins o nserum levels of hs-CRP and CRP in patients with cardiovacsular diseases: a systematic review and meta-analysis of raondomized controlled trials. Mediators Inflamm. 2022;2022:8732360. doi: 10.1155/2022/8732360.
    1. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO, 3rd, Criqui M, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107:499–511. doi: 10.1161/01.CIR.0000052939.59093.45.
    1. Ridker PM. A test in context: high-sensitivity C-reactive protein. J Am Coll Cardiol. 2016;67:712–723. doi: 10.1016/j.jacc.2015.11.037.
    1. Aroda VR, Ahmann A, Cariou B, Chow F, Davies MJ, Jódar E, et al. Comparative efficacy, safety, and cardiovascular outcomes with once-weekly subcutaneous semaglutide in the treatment of type 2 diabetes: Insights from the SUSTAIN 1–7 trials. Diabetes Metab. 2019;45:409–418. doi: 10.1016/j.diabet.2018.12.001.
    1. Lingvay I, Catarig AM, Frias JP, Kumar H, Lausvig NL, le Roux CW, et al. Efficacy and safety of once-weekly semaglutide versus daily canagliflozin as add-on to metformin in patients with type 2 diabetes (SUSTAIN 8): a double-blind, phase 3b, randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7:834–844. doi: 10.1016/S2213-8587(19)30311-0.
    1. Zinman B, Bhosekar V, Busch R, Holst I, Ludvik B, Thielke D, et al. Semaglutide once weekly as add-on to SGLT-2 inhibitor therapy in type 2 diabetes (SUSTAIN 9): a randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019;7:356–367. doi: 10.1016/S2213-8587(19)30066-X.
    1. Capehorn MS, Catarig AM, Furberg JK, Janez A, Price HC, Tadayon S, et al. Efficacy and safety of once-weekly semaglutide 1.0mg vs once-daily liraglutide 1.2mg as add-on to 1–3 oral antidiabetic drugs in subjects with type 2 diabetes (SUSTAIN 10) Diabetes Metab. 2020;46:100–109. doi: 10.1016/j.diabet.2019.101117.
    1. Thethi TK, Pratley R, Meier JJ. Efficacy, safety and cardiovascular outcomes of once-daily oral semaglutide in patients with type 2 diabetes: the PIONEER programme. Diabetes Obes Metab. 2020;22:1263–1277. doi: 10.1111/dom.14054.
    1. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–1844. doi: 10.1056/NEJMoa1607141.
    1. Husain M, Birkenfeld AL, Donsmark M, Dungan K, Eliaschewitz FG, Franco DR, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019;381:841–851. doi: 10.1056/NEJMoa1901118.
    1. Wu Y, Lu Y, Yang S, Zhang Q. Effects of incretin-based therapy on high-sensitivity C-reactive protein in patients with type 2 diabetes: a systematic review and meta-analysis. Rev Invest Clin. 2021;73:100–110.
    1. Seon MJ, Hwang SY, Son Y, Song J, Kim OY. Circulating GLP-1 levels as a potential indicator of metabolic syndrome risk in adult women. Nutrients. 2021;13:865. doi: 10.3390/nu13030865.
    1. Ahmann AJ, Capehorn M, Charpentier G, Dotta F, Henkel E, Lingvay I, et al. Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (SUSTAIN 3): a 56-week, open-label, randomized clinical trial. Diabetes Care. 2018;41:258–266. doi: 10.2337/dc17-0417.
    1. Aroda VR, Rosenstock J, Terauchi Y, Altuntas Y, Lalic NM, Morales Villegas EC, et al. PIONEER 1: randomized clinical trial of the efficacy and safety of oral semaglutide monotherapy in comparison with placebo in patients with type 2 diabetes. Diabetes Care. 2019;42:1724–1732. doi: 10.2337/dc19-0749.
    1. Rodbard HW, Rosenstock J, Canani LH, Deerochanawong C, Gumprecht J, Lindberg SØ, et al. Oral semaglutide versus empagliflozin in patients with type 2 diabetes uncontrolled on metformin: the PIONEER 2 trial. Diabetes Care. 2019;42:2272–2281. doi: 10.2337/dc19-0883.
    1. Mosenzon O, Blicher TM, Rosenlund S, Eriksson JW, Heller S, Hels OH, et al. Efficacy and safety of oral semaglutide in patients with type 2 diabetes and moderate renal impairment (PIONEER 5): a placebo-controlled, randomised, phase 3a trial. Lancet Diabetes Endocrinol. 2019;7:515–527. doi: 10.1016/S2213-8587(19)30192-5.
    1. Ahrén B, Masmiquel L, Kumar H, Sargin M, Karsbøl JD, Jacobsen SH, et al. Efficacy and safety of once-weekly semaglutide versus once-daily sitagliptin as an add-on to metformin, thiazolidinediones, or both, in patients with type 2 diabetes (SUSTAIN 2): a 56-week, double-blind, phase 3a, randomised trial. Lancet Diabetes Endocrinol. 2017;5:341–354. doi: 10.1016/S2213-8587(17)30092-X.
    1. Aroda VR, Bain SC, Cariou B, Piletic M, Rose L, Axelsen M, et al. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial. Lancet Diabetes Endocrinol. 2017;5:355–366. doi: 10.1016/S2213-8587(17)30085-2.
    1. Rodbard HW, Lingvay I, Reed J, de la Rosa R, Rose L, Sugimoto D, et al. Semaglutide added to basal insulin in type 2 diabetes (SUSTAIN 5): a randomized, controlled trial. J Clin Endocrinol Metab. 2018;103:2291–2301. doi: 10.1210/jc.2018-00070.
    1. Al-Salameh A, Chanson P, Bucher S, Ringa V, Becquemont L. Cardiovascular disease in type 2 diabetes: a review of sex-related differences in predisposition and prevention. Mayo Clin Proc. 2019;94:287–308. doi: 10.1016/j.mayocp.2018.08.007.
    1. VanderWeele TJ, Vansteelandt S. Mediation analysis with multiple mediators. Epidemiol Methods. 2014;2:95–115. doi: 10.1515/em-2012-0010.
    1. Katsiki N, Ferrannini E. Anti-inflammatory properties of antidiabetic drugs: a "promised land" in the COVID-19 era? J Diabetes Complications. 2020;34:107723. doi: 10.1016/j.jdiacomp.2020.107723.
    1. Mazidi M, Karimi E, Rezaie P, Ferns GA. Treatment with GLP1 receptor agonists reduce serum CRP concentrations in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Complications. 2017;31:1237–1242. doi: 10.1016/j.jdiacomp.2016.05.022.
    1. Newsome P, Francque S, Harrison S, Ratziu V, Van Gaal L, Calanna S, et al. Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity. Aliment Pharmacol Ther. 2019;50:193–203. doi: 10.1111/apt.15316.
    1. Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384:989. doi: 10.1056/NEJMoa2032183.
    1. Davies M, Færch L, Jeppesen OK, Pakseresht A, Pedersen SD, Perreault L, et al. Semaglutide 2.4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet. 2021;397:971–984. doi: 10.1016/S0140-6736(21)00213-0.
    1. Wadden TA, Bailey TS, Billings LK, Davies M, Frias JP, Koroleva A, et al. Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 randomized clinical trial. JAMA. 2021;325:1403–1413. doi: 10.1001/jama.2021.1831.
    1. Ahmad E, Waller HL, Sargeant JA, Webb MA, Htike ZZ, McCann GP, et al. Effects of liraglutide versus sitagliptin on circulating cardiovascular biomarkers, including circulating progenitor cells, in individuals with type 2 diabetes and obesity: analyses from the LYDIA trial. Diabetes Obes Metab. 2021;23:1409–1414. doi: 10.1111/dom.14343.
    1. Bray JJH, Foster-Davies H, Salem A, Hoole AL, Obaid DR, Halcox JPJ, et al. Glucagon-like peptide-1 receptor agonists improve biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomised controlled trials. Diabetes Obes Metab. 2021;23:1806–1822. doi: 10.1111/dom.14399.
    1. Kengne AP, Batty GD, Hamer M, Stamatakis E, Czernichow S. Association of C-reactive protein with cardiovascular disease mortality according to diabetes status: pooled analyses of 25,979 participants from four UK prospective cohort studies. Diabetes Care. 2012;35:396–403. doi: 10.2337/dc11-1588.
    1. Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically elevated C-reactive protein and ischemic vascular disease. N Engl J Med. 2008;359:1897–1908. doi: 10.1056/NEJMoa0707402.
    1. Rakipovski G, Rolin B, Nøhr J, Klewe I, Frederiksen KS, Augustin R, et al. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE(-/-) and LDLr(-/-) mice by a mechanism that includes inflammatory pathways. JACC Basic Transl Sci. 2018;3:844–857. doi: 10.1016/j.jacbts.2018.09.004.
    1. Kaul S. Mitigating cardiovascular risk in type 2 diabetes with antidiabetes drugs: a review of principal cardiovascular outcome results of EMPA-REG OUTCOME, LEADER, and SUSTAIN-6 trials. Diabetes Care. 2017;40:821–831. doi: 10.2337/dc17-0291.
    1. Yusta B, Baggio LL, Koehler J, Holland D, Cao X, Pinnell LJ, et al. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. Diabetes. 2015;64:2537–2549. doi: 10.2337/db14-1577.
    1. Bang-Berthelsen CH, Holm TL, Pyke C, Simonsen L, Søkilde R, Pociot F, et al. GLP-1 induces barrier protective expression in Brunner's glands and regulates colonic inflammation. Inflamm Bowel Dis. 2016;22:2078–2097. doi: 10.1097/MIB.0000000000000847.
    1. Bruen R, Curley S, Kajani S, Lynch G, O'Reilly ME, Dillon ET, et al. Liraglutide attenuates preestablished atherosclerosis in apolipoprotein E-deficient mice via regulation of immune cell phenotypes and proinflammatory mediators. J Pharmacol Exp Ther. 2019;370:447–458. doi: 10.1124/jpet.119.258343.
    1. Stam F, van Guldener C, Schalkwijk CG, ter Wee PM, Donker AJ, Stehouwer CD. Impaired renal function is associated with markers of endothelial dysfunction and increased inflammatory activity. Nephrol Dial Transplant. 2003;18:892–898. doi: 10.1093/ndt/gfg080.
    1. Liu L, Gao B, Wang J, Yang C, Wu S, Wu Y, et al. Reduction in serum high-sensitivity C-reactive protein favors kidney outcomes in patients with impaired fasting glucose or diabetes. J Diabetes Res. 2020;2020:2720905.
    1. Hahr AJ, Molitch ME. Management of diabetes mellitus in patients with chronic kidney disease. Clin Diabetes Endocrinol. 2015;1:2. doi: 10.1186/s40842-015-0001-9.
    1. Ahmadi-Abhari S, Kaptoge S, Luben RN, Wareham NJ, Khaw KT. Longitudinal association of C-reactive protein and haemoglobin A1c over 13 years: the European Prospective Investigation into Cancer-Norfolk study. Cardiovasc Diabetol. 2015;14:61. doi: 10.1186/s12933-015-0224-1.

Source: PubMed

3
구독하다