A pilot study of the immunogenicity of a 9-peptide breast cancer vaccine plus poly-ICLC in early stage breast cancer

Patrick M Dillon, Gina R Petroni, Mark E Smolkin, David R Brenin, Kimberly A Chianese-Bullock, Kelly T Smith, Walter C Olson, Ibrahim S Fanous, Carmel J Nail, Christiana M Brenin, Emily H Hall, Craig L Slingluff Jr, Patrick M Dillon, Gina R Petroni, Mark E Smolkin, David R Brenin, Kimberly A Chianese-Bullock, Kelly T Smith, Walter C Olson, Ibrahim S Fanous, Carmel J Nail, Christiana M Brenin, Emily H Hall, Craig L Slingluff Jr

Abstract

Background: Breast cancer remains a leading cause of cancer death worldwide. There is evidence that immunotherapy may play a role in the eradication of residual disease. Peptide vaccines for immunotherapy are capable of durable immune memory, but vaccines alone have shown sparse clinical activity against breast cancer to date. Toll-like receptor (TLR) agonists and helper peptides are excellent adjuvants for vaccine immunotherapy and they are examined in this human clinical trial.

Methods: A vaccine consisting of 9 MHC class I-restricted breast cancer-associated peptides (from MAGE-A1, -A3, and -A10, CEA, NY-ESO-1, and HER2 proteins) was combined with a TLR3 agonist, poly-ICLC, along with a helper peptide derived from tetanus toxoid. The vaccine was administered on days 1, 8, 15, 36, 57, 78. CD8+ T cell responses to the vaccine were assessed by both direct and stimulated interferon gamma ELIspot assays.

Results: Twelve patients with breast cancer were treated: five had estrogen receptor positive disease and five were HER2 amplified. There were no dose-limiting toxicities. Toxicities were limited to Grade 1 and Grade 2 and included mild injection site reactions and flu-like symptoms, which occurred in most patients. The most common toxicities were injection site reaction/induration and fatigue, which were experienced by 100% and 92% of participants, respectively. In the stimulated ELIspot assays, peptide-specific CD8+ T cell responses were detected in 4 of 11 evaluable patients. Two patients had borderline immune responses to the vaccine. The two peptides derived from CEA were immunogenic. No difference in immune response was evident between patients receiving endocrine therapy and those not receiving endocrine therapy during the vaccine series.

Conclusions: Peptide vaccine administered in the adjuvant breast cancer setting was safe and feasible. The TLR3 adjuvant, poly-ICLC, plus helper peptide mixture provided modest immune stimulation. Further optimization is required for this multi-peptide vaccine/adjuvant combination.

Trial registration: ClinicalTrials.gov (posted 2/15/2012): NCT01532960. Registered 2/8/2012. https://ichgcp.net/clinical-trials-registry/NCT01532960.

Keywords: Breast cancer; TLR3; agonist; cancer vaccine; cytotoxic T-cell lymphocyte response; immunotherapy; peptide; poly-ICLC.

Conflict of interest statement

Ethics approval and consent to participate

All patients provided written informed consent. The protocol was approved by the institutional review boards or ethics committees of the University of Virginia. The study was conducted in accordance with declaration of Helsinki with good clinical practice as defined by the International Conference on Harmonization.

Consent for publication

Not applicable.

Competing interests

Dr. Slingluff serves as an external advisor for Immatics, and as PI for the MAVIS vaccine trial run by Polynoma. UVA receives funds from those roles. Dr. Slingluff receives licensing payments for patents on peptides used in vaccines, but not for ones in this vaccine. Dr. Dillon has received research funding on behalf of his institution from Merck Pharmaceuticals, Novartis Pharmaceuticals, Eli Lilly and Company, and Pfizer Pharmaceuticals.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Schema. The general schema of treatment including the timing of the vaccine series and the times for blood draws for ELIspot analysis is shown
Fig. 2
Fig. 2
Stimulated ELIspot responses. Four confirmed responses and 2 near-responders to the multi-peptide vaccine following in vitro stimulated and analyzed by ELIspot. The x-axis shows both the week of study and the vaccine number (v = 1, etc). The y axis is label for the adjusted ratio of spots to negative control. The dashed line indicates the preferred threshold ratio for response and is set at a threshold ratio of 2.0 and minimum of 20 T cells per 100,000 CD8+ T cells in a stimulated assay. Only the HLA relevant peptides for each patient are shown. *In all graphs there is at least one peptide (marked *) for which the adjusted ELIspot ratio remained 0 throughout and the corresponding data points for ratio of 0 are not shown

References

    1. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34(21):2460–2467. doi: 10.1200/JCO.2015.64.8931.
    1. Emens L, Adams S, Loi S, Schmid P, Schneeweiss A, Rugo H et al. A phase III randomized trial of atezolizumab in combination with nab-paclitaxel as first line therapy for patients with metastatic triple-negative breast cancer (mTNBC). Cancer res 76[4s]. 2-15-2016. Ref Type: Abstract.
    1. Antonilli M, Rahimi H, Visconti V, Napoletano C, Ruscito I, Zizzari IG, et al. Triple peptide vaccination as consolidation treatment in women affected by ovarian and breast cancer: clinical and immunological data of a phase I/II clinical trial. Int J Oncol. 2016;48(4):1369–1378.
    1. Disis ML, Gad E, Herendeen DR, Lai VP, Park KH, Cecil DL, et al. A multiantigen vaccine targeting neu, IGFBP-2, and IGF-IR prevents tumor progression in mice with preinvasive breast disease. Cancer Prev Res (Phila) 2013;6(12):1273–1282. doi: 10.1158/1940-6207.CAPR-13-0182.
    1. Mittendorf EA, Ardavanis A, Litton JK, Shumway NM, Hale DF, Murray JL, et al. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence. Oncotarget. 2016;7(40):66192–66201.
    1. Mittendorf EA, Ardavanis A, Symanowski J, Murray JL, Shumway NM, Litton JK, et al. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide AE37 vaccine in breast cancer patients to prevent recurrence. Ann Oncol. 2016;27(7):1241–1248. doi: 10.1093/annonc/mdw150.
    1. Koski GK, Koldovsky U, Xu S, Mick R, Sharma A, Fitzpatrick E, et al. A novel dendritic cell-based immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in women with early breast cancer. J Immunother. 2012;35(1):54–65. doi: 10.1097/CJI.0b013e318235f512.
    1. Hunter TB, Alsarraj M, Gladue RP, Bedian V, Antonia SJ. An agonist antibody specific for CD40 induces dendritic cell maturation and promotes autologous anti-tumour T-cell responses in an in vitro mixed autologous tumour cell/lymph node cell model. Scand J Immunol. 2007;65(5):479–486. doi: 10.1111/j.1365-3083.2007.01927.x.
    1. Murphy WJ, Welniak L. Back T, Hixon J, Subleski J, Seki N et al. synergistic anti-tumor responses after administration of agonistic antibodies to CD40 and IL-2: coordination of dendritic and CD8+ cell responses. J Immunol. 2003;170(5):2727–2733. doi: 10.4049/jimmunol.170.5.2727.
    1. Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol. 2007;25(7):876–883. doi: 10.1200/JCO.2006.08.3311.
    1. Slingluff CL, Petroni GR, Smolkin ME, Chianese-Bullock KA, Smith K, Murphy C, et al. Immunogenicity for CD8+ and CD4+ T cells of 2 formulations of an incomplete freund's adjuvant for multipeptide melanoma vaccines. J Immunother. 2010;33(6):630–638. doi: 10.1097/CJI.0b013e3181e311ac.
    1. Slingluff CL, Jr, Yamshchikov G, Neese P, Galavotti H, Eastham S, Engelhard VH, et al. Phase I trial of a melanoma vaccine with gp100(280-288) peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes. Clin Cancer Res. 2001;7(10):3012–3024.
    1. Wick DA, Martin SD, Nelson BH, Webb JR. Profound CD8+ T cell immunity elicited by sequential daily immunization with exogenous antigen plus the TLR3 agonist poly(I:C) Vaccine. 2011;29(5):984–993. doi: 10.1016/j.vaccine.2010.11.036.
    1. Chang BA, Cross JL, Najar HM, Dutz JP. Topical resiquimod promotes priming of CTL to parenteral antigens. Vaccine. 2009;27(42):5791–5799. doi: 10.1016/j.vaccine.2009.07.062.
    1. Giantonio BJ, Hochster H, Blum R, Wiernik PH, Hudes GR, Kirkwood J, et al. Toxicity and response evaluation of the interferon inducer poly ICLC administered at low dose in advanced renal carcinoma and relapsed or refractory lymphoma: a report of two clinical trials of the eastern cooperative oncology group. Investig New Drugs. 2001;19(1):89–92. doi: 10.1023/A:1006458232384.
    1. Schneider LP, Schoonderwoerd AJ, Moutaftsi M, Howard RF, Reed SG, de Jong EC, et al. Intradermally administered TLR4 agonist GLA-SE enhances the capacity of human skin DCs to activate T cells and promotes emigration of Langerhans cells. Vaccine. 2012;30(28):4216–4224. doi: 10.1016/j.vaccine.2012.04.051.
    1. Salazar E, Zaremba S, Arlen PM, Tsang KY, Schlom J. Agonist peptide from a cytotoxic t-lymphocyte epitope of human carcinoembryonic antigen stimulates production of tc1-type cytokines and increases tyrosine phosphorylation more efficiently than cognate peptide. Int J Cancer. 2000;85(6):829–838. doi: 10.1002/(SICI)1097-0215(20000315)85:6<829::AID-IJC16>;2-K.
    1. Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst. 1995;87(13):982–990. doi: 10.1093/jnci/87.13.982.
    1. Mittendorf EA, Clifton GT, Holmes JP, Schneble E, Van ED, Ponniah S, et al. final report of the phase I/II clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in high-risk breast cancer patients. Ann Oncol. 2014;25(9):1735–1742. doi: 10.1093/annonc/mdu211.
    1. Schneble EJ, Berry JS, Trappey FA, Clifton GT, Ponniah S, Mittendorf E, et al. The HER2 peptide nelipepimut-S (E75) vaccine (NeuVax) in breast cancer patients at risk for recurrence: correlation of immunologic data with clinical response. Immunotherapy. 2014;6(5):519–531. doi: 10.2217/imt.14.22.
    1. Mittendorf EA, Clifton GT, Holmes JP, Clive KS, Patil R, Benavides LC, et al. Clinical trial results of the HER-2/neu (E75) vaccine to prevent breast cancer recurrence in high-risk patients: from US military cancer institute clinical trials group study I-01 and I-02. Cancer. 2012;118(10):2594–2602. doi: 10.1002/cncr.26574.
    1. Benavides LC, Gates JD, Carmichael MG, Patil R, Holmes JP, Hueman MT, et al. The impact of HER2/neu expression level on response to the E75 vaccine: from U.S. military cancer institute clinical trials group study I-01 and I-02. Clin Cancer Res. 2009;15(8):2895–2904. doi: 10.1158/1078-0432.CCR-08-1126.
    1. Holmes JP, Gates JD, Benavides LC, Hueman MT, Carmichael MG, Patil R, et al. Optimal dose and schedule of an HER-2/neu (E75) peptide vaccine to prevent breast cancer recurrence: from US military cancer institute clinical trials group study I-01 and I-02. Cancer. 2008;113(7):1666–1675. doi: 10.1002/cncr.23772.
    1. Mittendorf EA, Holmes JP, Ponniah S, Peoples GE. The E75 HER2/neu peptide vaccine. Cancer Immunol Immunother. 2008;57(10):1511–1521. doi: 10.1007/s00262-008-0540-3.
    1. Peoples GE, Holmes JP, Hueman MT, Mittendorf EA, Amin A, Khoo S, et al. Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. military cancer institute clinical trials group study I-01 and I-02. Clin Cancer Res. 2008;14(3):797–803. doi: 10.1158/1078-0432.CCR-07-1448.
    1. Brenin D, Chianese-Bullock K, Petroni G. Evaluation of the safety and immunogenicity of a multiple synthetic peptide vaccine in patients with advanced breast cancer. J Clin Oncol 28[15s]. 6–4-2010. Ref Type: Abstract.
    1. Hailemichael Y, Overwijk WW. Cancer vaccines: trafficking of tumor-specific T cells to tumor after therapeutic vaccination. Int J Biochem Cell Biol. 2014;53:46–50. doi: 10.1016/j.biocel.2014.04.019.
    1. Hailemichael Y, Overwijk WW. Peptide-based anticancer vaccines: the making and unmaking of a T-cell graveyard. Oncoimmunology. 2013;2(7):e24743. doi: 10.4161/onci.24743.
    1. Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF, et al. Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med. 2013;19(4):465–472. doi: 10.1038/nm.3105.
    1. Butowski N, Lamborn KR, Lee BL, Prados MD, Cloughesy T, Deangelis LM, et al. A north American brain tumor consortium phase II study of poly-ICLC for adult patients with recurrent anaplastic gliomas. J Neuro-Oncol. 2009;91(2):183–189. doi: 10.1007/s11060-008-9705-3.
    1. Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, YY X, Kalos M, et al. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res. 2014;20(5):1355–1365. doi: 10.1158/1078-0432.CCR-13-2817.
    1. Tsuji T, Sabbatini P, Jungbluth AA, Ritter E, Pan L, Ritter G, et al. Effect of Montanide and poly-ICLC adjuvant on human self/tumor antigen-specific CD4+ T cells in phase I overlapping long peptide vaccine trial. Cancer Immunol Res. 2013;1(5):340–350. doi: 10.1158/2326-6066.CIR-13-0089.
    1. Slingluff CL, Jr., Petroni GR, Yamshchikov GV, Barnd DL, Eastham S, Galavotti H et al. Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol 2003; 21(21): 4016–4026.
    1. Slingluff CL, Jr., Petroni GR, Yamshchikov GV, Hibbitts S, Grosh WW, Chianese-Bullock KA et al. Immunologic and clinical outcomes of vaccination with a multiepitope melanoma peptide vaccine plus low-dose interleukin-2 administered either concurrently or on a delayed schedule. J Clin Oncol 2004; 22(22): 4474–4485.
    1. Slingluff CL, Jr, Petroni GR, Chianese-Bullock KA, Smolkin ME, Hibbitts S, Murphy C, et al. Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin Cancer Res. 2007;13(21):6386–6395. doi: 10.1158/1078-0432.CCR-07-0486.
    1. Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, et al. Evaluation of peptide vaccine immunogenicity in draining lymph nodes and peripheral blood of melanoma patients. Int J Cancer. 2001;92(5):703–711. doi: 10.1002/1097-0215(20010601)92:5<703::AID-IJC1250>;2-5.
    1. Slingluff CL, Jr., Petroni GR, Olson WC, Smolkin ME, Ross MI, Haas NB et al. Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin Cancer Res 2009; 15(22): 7036–7044.
    1. Chianese-Bullock KA, Irvin WP, Jr, Petroni GR, Murphy C, Smolkin M, Olson WC, et al. A multipeptide vaccine is safe and elicits T-cell responses in participants with advanced stage ovarian cancer. J Immunother. 2008;31(4):420–430. doi: 10.1097/CJI.0b013e31816dad10.
    1. Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology. 2015;82(3–4):142–152. doi: 10.1159/000430499.
    1. Chianese-Bullock KA, Pressley J, Garbee C, Hibbitts S, Murphy C, Yamshchikov G, et al. MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J Immunol. 2005;174(5):3080–3086. doi: 10.4049/jimmunol.174.5.3080.
    1. Slingluff CL, Jr, Petroni GR, Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, et al. Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol. 2003;21(21):4016–4026. doi: 10.1200/JCO.2003.10.005.
    1. Slingluff CL, Jr, Petroni GR, Yamshchikov GV, Hibbitts S, Grosh WW, Chianese-Bullock KA, et al. Immunologic and clinical outcomes of vaccination with a multiepitope melanoma peptide vaccine plus low-dose interleukin-2 administered either concurrently or on a delayed schedule. J Clin Oncol. 2004;22(22):4474–4485. doi: 10.1200/JCO.2004.10.212.
    1. Luheshi NM, Coates-Ulrichsen J, Harper J, Mullins S, Sulikowski MG, Martin P, et al. Transformation of the tumour microenvironment by a CD40 agonist antibody correlates with improved responses to PD-L1 blockade in a mouse orthotopic pancreatic tumour model. Oncotarget. 2016;7(14):18508–18520. doi: 10.18632/oncotarget.7610.
    1. Soong RS, Song L, Trieu J, Lee SY, He L, Tsai YC, et al. Direct T cell activation via CD40 ligand generates high avidity CD8+ T cells capable of breaking immunological tolerance for the control of tumors. PLoS One. 2014;9(3):e93162. doi: 10.1371/journal.pone.0093162.
    1. Wong R, Lau R, Chang J, Kuus-Reichel T, Brichard V, Bruck C, et al. Immune responses to a class II helper peptide epitope in patients with stage III/IV resected melanoma. Clin Cancer Res. 2004;10(15):5004–5013. doi: 10.1158/1078-0432.CCR-04-0241.
    1. Harris RC, Chianese-Bullock KA, Petroni GR, Schaefer JT, Brill LB, Molhoek KR, et al. The vaccine-site microenvironment induced by injection of incomplete Freund's adjuvant, with or without melanoma peptides. J Immunother. 2012;35(1):78–88. doi: 10.1097/CJI.0b013e31823731a4.
    1. Salerno EP, Shea SM, Olson WC, Petroni GR, Smolkin ME, McSkimming C, et al. Activation, dysfunction and retention of T cells in vaccine sites after injection of incomplete Freund's adjuvant, with or without peptide. Cancer Immunol Immunother. 2013;62(7):1149–1159. doi: 10.1007/s00262-013-1435-5.
    1. Soeda A, Morita-Hoshi Y, Kaida M, Wakeda T, Yamaki Y, Kojima Y, et al. Long-term administration of Wilms tumor-1 peptide vaccine in combination with gemcitabine causes severe local skin inflammation at injection sites. Jpn J Clin Oncol. 2010;40(12):1184–1188. doi: 10.1093/jjco/hyq112.
    1. Slingluff CL, Jr, Petroni GR, Olson WC, Smolkin ME, Ross MI, Haas NB, et al. Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin Cancer Res. 2009;15(22):7036–7044. doi: 10.1158/1078-0432.CCR-09-1544.
    1. Saadatmand S, de Kruijf EM, Sajet A, Dekker-Ensink NG, van Nes JG, Putter H, et al. Expression of cell adhesion molecules and prognosis in breast cancer. Br J Surg. 2013;100(2):252–260. doi: 10.1002/bjs.8980.
    1. Sundblad AS, Pellicer EM, Ricci L. Carcinoembryonic antigen expression in stages I and II breast cancer: its relationship with clinicopathologic factors. Hum Pathol. 1996;27(3):297–301. doi: 10.1016/S0046-8177(96)90072-6.
    1. Geynisman DM, Zha Y, Kunnavakkam R, Aklilu M, Catenacci DV, Polite BN, et al. A randomized pilot phase I study of modified carcinoembryonic antigen (CEA) peptide (CAP1-6D)/montanide/GM-CSF-vaccine in patients with pancreatic adenocarcinoma. J Immunother Cancer. 2013;1:8. doi: 10.1186/2051-1426-1-8.
    1. Lesterhuis WJ, de Vries IJ, Schreibelt G, Schuurhuis DH, Aarntzen EH. De BA et al. immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res. 2010;30(12):5091–5097.
    1. Diaz CM, Chiappori A, Aurisicchio L, Bagchi A, Clark J, Dubey S, et al. Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors. J Transl Med. 2013;11:62. doi: 10.1186/1479-5876-11-62.
    1. Vasir B, Zarwan C, Ahmad R, Crawford KD, Rajabi H, Matsuoka K, et al. Induction of antitumor immunity ex vivo using dendritic cells transduced with fowl pox vector expressing MUC1, CEA, and a triad of costimulatory molecules (rF-PANVAC) J Immunother. 2012;35(7):555–569. doi: 10.1097/CJI.0b013e31826a73de.
    1. McCann KJ, Mander A, Cazaly A, Chudley L, Stasakova J, Thirdborough SM, et al. Targeting carcinoembryonic antigen with DNA vaccination: on-target adverse events link with immunologic and clinical outcomes. Clin Cancer Res. 2016;22(19):4827-36.
    1. Abd-Elsalam EA, Ismaeil NA. Melanoma-associated antigen genes: a new trend to predict the prognosis of breast cancer patients. Med Oncol. 2014;31(11):285. doi: 10.1007/s12032-014-0285-0.
    1. Joosse SA, Muller V, Steinbach B, Pantel K, Schwarzenbach H. Circulating cell-free cancer-testis MAGE-A RNA, BORIS RNA, let-7b and miR-202 in the blood of patients with breast cancer and benign breast diseases. Br J Cancer. 2014;111(5):909–917. doi: 10.1038/bjc.2014.360.
    1. Mrklic I, Spagnoli GC, Juretic A, Pogorelic Z, Tomic S. Co-expression of cancer testis antigens and topoisomerase 2-alpha in triple negative breast carcinomas. Acta Histochem. 2014;116(5):740–746. doi: 10.1016/j.acthis.2014.01.003.
    1. Adams S, Greeder L, Reich E, Shao Y, Fosina D, Hanson N, et al. Expression of cancer testis antigens in human BRCA-associated breast cancers: potential targets for immunoprevention? Cancer Immunol Immunother. 2011;60(7):999–1007. doi: 10.1007/s00262-011-1005-7.
    1. Otte M, Zafrakas M, Riethdorf L, Pichlmeier U, Loning T, Janicke F, et al. MAGE-A gene expression pattern in primary breast cancer. Cancer Res. 2001;61(18):6682–6687.
    1. Woll MM, Fisher CM, Ryan GB, Gurney JM, Storrer CE, Ioannides CG, et al. Direct measurement of peptide-specific CD8+ T cells using HLA-A2:Ig dimer for monitoring the in vivo immune response to a HER2/neu vaccine in breast and prostate cancer patients. J Clin Immunol. 2004;24(4):449–461. doi: 10.1023/B:JOCI.0000029117.10791.98.
    1. Datta J, Rosemblit C, Berk E, Showalter L, Namjoshi P, Mick R, et al. Progressive loss of anti-HER2 CD4+ T-helper type 1 response in breast tumorigenesis and the potential for immune restoration. Oncoimmunology. 2015;4(10):e1022301. doi: 10.1080/2162402X.2015.1022301.
    1. Okada H, Butterfield LH, Hamilton RL, Hoji A, Sakaki M, Ahn BJ, et al. Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin Cancer Res. 2015;21(2):286–294. doi: 10.1158/1078-0432.CCR-14-1790.
    1. Sabbatini P, Tsuji T, Ferran L, Ritter E, Sedrak C, Tuballes K, et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res. 2012;18(23):6497–6508. doi: 10.1158/1078-0432.CCR-12-2189.
    1. Hartman LL, Crawford JR, Makale MT, Milburn M, Joshi S, Salazar AM, et al. Pediatric phase II trials of poly-ICLC in the management of newly diagnosed and recurrent brain tumors. J Pediatr Hematol Oncol. 2014;36(6):451–457. doi: 10.1097/MPH.0000000000000047.
    1. Butowski N, Chang SM, Junck L, Deangelis LM, Abrey L, Fink K, et al. A phase II clinical trial of poly-ICLC with radiation for adult patients with newly diagnosed supratentorial glioblastoma: a north American brain tumor consortium (NABTC01-05) J Neuro-Oncol. 2009;91(2):175–182. doi: 10.1007/s11060-008-9693-3.
    1. Rosenfeld MR, Chamberlain MC, Grossman SA, Peereboom DM, Lesser GJ, Batchelor TT, et al. A multi-institution phase II study of poly-ICLC and radiotherapy with concurrent and adjuvant temozolomide in adults with newly diagnosed glioblastoma. Neuro-Oncology. 2010;12(10):1071–1077. doi: 10.1093/neuonc/noq071.
    1. Stanton SE, Disis ML. Designing vaccines to prevent breast cancer recurrence or invasive disease. Immunotherapy. 2015;7(2):69–72. doi: 10.2217/imt.15.5.
    1. Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534(7607):396–401. doi: 10.1038/nature18300.

Source: PubMed

3
구독하다