Delivery Mode and the Transition of Pioneering Gut-Microbiota Structure, Composition and Predicted Metabolic Function

Noel T Mueller, Hakdong Shin, Aline Pizoni, Isabel C Werlang, Ursula Matte, Marcelo Z Goldani, Helena A S Goldani, Maria G Dominguez-Bello, Noel T Mueller, Hakdong Shin, Aline Pizoni, Isabel C Werlang, Ursula Matte, Marcelo Z Goldani, Helena A S Goldani, Maria G Dominguez-Bello

Abstract

Cesarean (C-section) delivery, recently shown to cause excess weight gain in mice, perturbs human neonatal gut microbiota development due to the lack of natural mother-to-newborn transfer of microbes. Neonates excrete first the in-utero intestinal content (referred to as meconium) hours after birth, followed by intestinal contents reflective of extra-uterine exposure (referred to as transition stool) 2 to 3 days after birth. It is not clear when the effect of C-section on the neonatal gut microbiota emerges. We examined bacterial DNA in carefully-collected meconium, and the subsequent transitional stool, from 59 neonates [13 born by scheduled C-section and 46 born by vaginal delivery] in a private hospital in Brazil. Bacterial DNA was extracted, and the V4 region of the 16S rRNA gene was sequenced using the Illumina MiSeq (San Diego, CA, USA) platform. We found evidence of bacterial DNA in the majority of meconium samples in our study. The bacterial DNA structure (i.e., beta diversity) of meconium differed significantly from that of the transitional stool microbiota. There was a significant reduction in bacterial alpha diversity (e.g., number of observed bacterial species) and change in bacterial composition (e.g., reduced Proteobacteria) in the transition from meconium to stool. However, changes in predicted microbiota metabolic function from meconium to transitional stool were only observed in vaginally-delivered neonates. Within sample comparisons showed that delivery mode was significantly associated with bacterial structure, composition and predicted microbiota metabolic function in transitional-stool samples, but not in meconium samples. Specifically, compared to vaginally delivered neonates, the transitional stool of C-section delivered neonates had lower proportions of the genera Bacteroides, Parabacteroides and Clostridium. These differences led to C-section neonates having lower predicted abundance of microbial genes related to metabolism of amino and nucleotide sugars, and higher abundance of genes related to fatty-acid metabolism, amino-acid degradation and xenobiotics biodegradation. In summary, microbiota diversity was reduced in the transition from meconium to stool, and the association of delivery mode with microbiota structure, composition and predicted metabolic function was not observed until the passing of the transitional stool after meconium.

Keywords: cesarean section; microbial community; microbiome; microbiota; obesity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Bacterial alpha diversity in the meconium and transitional stool by delivery mode. Samples were rarefied to 1634 reads per sample. The nonparametric p values were calculated using 100,000 Monte Carlo permutation. Different letters indicate significant differences (e.g., ‘a’ is significantly different from ‘b’, but not significantly different from ‘a’); Statistical significance for phylogenetic diversity (PD) whole tree, p < 0.005; Observed species, p < 0.05. +, outlier samples.
Figure 2
Figure 2
Bacterial diversity in the meconium and transitional stool by delivery mode. (AC) Principal Coordinate Analysis (PCoA) plot of bacterial communities in meconium (A) and transitional stool (B) by delivery mode. Weighted UniFrac distances were used to evaluate diversity between samples. PERMANOVA was used to test dissimilarity. (C) Box plot of intra-group distances. The non-parametric p values were calculated using 100,000 Monte Carlo permutation. Different letters (a, b and c) indicate significant differences; p < 0.001.
Figure 3
Figure 3
Bacterial taxa comparisons in meconium and transitional stool by delivery mode. (A) Each taxonomy (>1% of average relative abundance in any groups) is indicated by a different color at the genus level. ** Indicates overrepresented taxa (using LDA > 3.0) in comparisons of delivery mode within sample type. (B) Histogram of overrepresented taxa (using LDA > 3.0) in each group.

References

    1. Lavender T., Hofmeyr G.J., Neilson J.P., Kingdon C., Gyte G.M. Caesarean section for non-medical reasons at term. Cochrane Database Syst. Rev. 2012;14 doi: 10.1002/14651858.CD004660.pub3.
    1. American College of Obstetricians and Gynecologists (College) Society for Maternal-Fetal Medicine. Caughey A.B., Cahill A.G., Guise J.M., Rouse D.J. Safe prevention of the primary cesarean delivery. Am. J. Obstet. Gynecol. 2014;210:179–193. doi: 10.1016/j.ajog.2014.01.026.
    1. Macfarlane A.J., Blondel B., Mohangoo A.D., Cuttini M., Nijhuis J., Novak Z., Olafsdottir H.S., Zeitlin J., Euro-Peristat Scientific Committee Wide differences in mode of delivery within Europe: Risk-stratified analyses of aggregated routine data from the Euro-Peristat study. BJOG. 2016;123:559–568. doi: 10.1111/1471-0528.13284.
    1. Vieira G.O., Fernandes L.G., de Oliveira N.F., Silva L.R., Vieira Tde O. Factors associated with cesarean delivery in public and private hospitals in a city of northeastern Brazil: A cross-sectional study. BMC Pregnancy Childbirth. 2015;15:132. doi: 10.1186/s12884-015-0570-8.
    1. Mueller N.T., Mao G., Bennet W.L., Hourigan S.K., Dominguez-Bello M.G., Appel L.J., Wang X. Does vaginal delivery mitigate or strengthen the intergenerational association of overweight and obesity? Findings from the Boston Birth Cohort. Int. J Obes. 2017;41:497–501. doi: 10.1038/ijo.2016.219.
    1. Mueller N.T., Whyatt R., Hoepner L., Oberfield S., Dominguez-Bello M.G., Widen E.M., Hassoun A., Perera F., Rundle A. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int. J. Obes. 2015;39:665–670. doi: 10.1038/ijo.2014.180.
    1. Mueller N.T., Bakacs E., Combellick J., Grigoryan Z., Dominguez-Bello M.G. The infant microbiome development: Mom matters. Trends Mol. Med. 2015;21:109–117. doi: 10.1016/j.molmed.2014.12.002.
    1. Rusconi F., Zugna D., Annesi-Maesano I., Baiz N., Barros H., Correia S., Duijts L., Forastiere F., Inskip H., Kelleher C.C., et al. Mode of Delivery and Asthma at School Age in 9 European Birth Cohorts. Am. J. Epidemiol. 2017;185:465–473. doi: 10.1093/aje/kwx021.
    1. Martinez K.A., Devlin J.C., Lacher C.R., Yin Y., Cai Y., Wang J., Dominguez-Bello M.G. Increased weight gain by C-section: Functional significance of the primordial microbiome. Sci. Adv. 2017;3 doi: 10.1126/sciadv.aao1874.
    1. Makino H., Kushiro A., Ishikawa E., Muylaert D., Kubota H., Sakai T., Oishi K., Martin R., Ben Amor K., Oozeer R., et al. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl. Environ. Microbiol. 2011;77:6788–6793. doi: 10.1128/AEM.05346-11.
    1. Makino H., Kushiro A., Ishikawa E., Kubota H., Gawad A., Sakai T., Oishi K., Martin R., Ben-Amor K., Knol J., et al. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s microbiota. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0078331.
    1. Jost T., Lacroix C., Braegger C.P., Rochat F., Chassard C. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 2014;16:2891–2904. doi: 10.1111/1462-2920.12238.
    1. Funkhouser L.J., Bordenstein S.R. Mom knows best: The universality of maternal microbial transmission. PLoS Biol. 2013;11 doi: 10.1371/journal.pbio.1001631.
    1. Azad M.B., Konya T., Persaud R.R., Guttman D.S., Chari R.S., Field C.J., Sears M.R., Mandhane P.J., Turvey S.E., Subbarao P., et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: A prospective cohort study. BJOG. 2016;123:983–993. doi: 10.1111/1471-0528.13601.
    1. Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA. 2010;107:11971–11975. doi: 10.1073/pnas.1002601107.
    1. Martin R., Makino H., Cetinyurek Yavuz A., Ben-Amor K., Roelofs M., Ishikawa E., Kubota H., Swinkels S., Sakai T., Oishi K., et al. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota. PLoS ONE. 2016;11 doi: 10.1371/journal.pone.0158498.
    1. Shin H., Pei Z., Martinez K.A., Rivera-Vinas J.I., Mendez K., Cavallin H., Dominguez-Bello M.G. The first microbial environment of infants born by C-section: The operating room microbes. Microbiome. 2015;3:59. doi: 10.1186/s40168-015-0126-1.
    1. Bokulich N.A., Chung J., Battaglia T., Henderson N., Jay M., Li H., Lieber A.D., Wu F., Perez-Perez G.I., Chen Y., et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 2016;8 doi: 10.1126/scitranslmed.aad7121.
    1. Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014;6 doi: 10.1126/scitranslmed.3008599.
    1. Romano-Keeler J., Moore D.J., Wang C., Brucker R.M., Fonnesbeck C., Slaughter J.C., Li H., Curran D.P., Meng S., Correa H., et al. Early life establishment of site-specific microbial communities in the gut. Gut Microbes. 2014;5:192–201. doi: 10.4161/gmic.28442.
    1. Walker R.W., Clemente J.C., Peter I., Loos R.J.F. The prenatal gut microbiome: Are we colonized with bacteria in utero? Pediatr. Obes. 2017;12(Suppl. 1):3–17. doi: 10.1111/ijpo.12217.
    1. Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Lozupone C.A., Turnbaugh P.J., Fierer N., Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 2011;108(Suppl. 1):4516–4522. doi: 10.1073/pnas.1000080107.
    1. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Pena A.G., Goodrich J.K., Gordon J.I., et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303.
    1. DeSantis T.Z., Hugenholtz P., Larsen N., Rojas M., Brodie E.L., Keller K., Huber T., Dalevi D., Hu P., Andersen G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006;72:5069–5072. doi: 10.1128/AEM.03006-05.
    1. Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461.
    1. Caporaso J.G., Bittinger K., Bushman F.D., DeSantis T.Z., Andersen G.L., Knight R. PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26:266–267. doi: 10.1093/bioinformatics/btp636.
    1. Lozupone C., Hamady M., Knight R. UniFrac—An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics. 2006;7:371. doi: 10.1186/1471-2105-7-371.
    1. Kelly B.J., Gross R., Bittinger K., Sherrill-Mix S., Lewis J.D., Collman R.G., Bushman F.D., Li H. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA. Bioinformatics. 2015;31:2461–2468. doi: 10.1093/bioinformatics/btv183.
    1. Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., Huttenhower C. Metagenomic biomarker discovery and explanation. Gen. Biol. 2011;12 doi: 10.1186/gb-2011-12-6-r60.
    1. Langille M.G., Zaneveld J., Caporaso J.G., McDonald D., Knights D., Reyes J.A., Clemente J.C., Burkepile D.E., Vega Thurber R.L., Knight R., et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013;31:814–821. doi: 10.1038/nbt.2676.
    1. Kanehisa M., Goto S., Sato Y., Kawashima M., Furumichi M., Tanabe M. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res. 2014;42 doi: 10.1093/nar/gkt1076.
    1. Pantoja-Feliciano I.G., Clemente J.C., Costello E.K., Perez M.E., Blaser M.J., Knight R., Dominguez-Bello M.G. Biphasic assembly of the murine intestinal microbiota during early development. ISME J. 2013;7:1112–1115. doi: 10.1038/ismej.2013.15.
    1. Dominguez-Bello M.G., De Jesus-Laboy K.M., Shen N., Cox L.M., Amir A., Gonzalez A., Bokulich N.A., Song S.J., Hoashi M., Rivera-Vinas J.I., et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 2016;22:250–253. doi: 10.1038/nm.4039.
    1. Kunji E.R., Mierau I., Hagting A., Poolman B., Konings W.N. The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek. 1996;70:187–221. doi: 10.1007/BF00395933.
    1. Jiang T., Savaiano D.A. In vitro lactose fermentation by human colonic bacteria is modified by Lactobacillus acidophilus supplementation. J. Nutr. 1997;127:1489–1495.
    1. Angelakis E., Armougom F., Million M., Raoult D. The relationship between gut microbiota and weight gain in humans. Future Microbiol. 2012;7:91–109. doi: 10.2217/fmb.11.142.
    1. Soergel K.H. Colonic fermentation: Metabolic and clinical implications. Clin. Investig. 1994;72:742–748. doi: 10.1007/BF00180540.
    1. Nagpal R., Tsuji H., Takahashi T., Kawashima K., Nagata S., Nomoto K., Yamashiro Y. Sensitive Quantitative Analysis of the Meconium Bacterial Microbiota in Healthy Term Infants Born Vaginally or by Cesarean Section. Front. Microbiol. 2016;7:1997. doi: 10.3389/fmicb.2016.01997.
    1. Chu D.M., Ma J., Prince A.L., Antony K.M., Seferovic M.D., Aagaard K.M. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 2017;23:314–326. doi: 10.1038/nm.4272.
    1. Mueller N.T., Shin H., Pizoni A., Werlang I.C., Matte U., Goldani M.Z., Goldani H.A., Dominguez-Bello M.G. Birth mode-dependent association between pre-pregnancy maternal weight status and the neonatal intestinal microbiome. Sci. Rep. 2016;6:23133. doi: 10.1038/srep23133.
    1. Perez-Munoz M.E., Arrieta M.C., Ramer-Tait A.E., Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: Implications for research on the pioneer infant microbiome. Microbiome. 2017;5:48. doi: 10.1186/s40168-017-0268-4.
    1. Heineck I., Ferreira M.B., Schenkel E.P. Prescribing practice for antibiotic prophylaxis for cesarean section in a teaching hospital in Brazil. Am. J. Infect. Control. 2002;30:341–345. doi: 10.1067/mic.2002.123347.
    1. Farret T.C., Dalle J., Monteiro Vda S., Riche C.V., Antonello V.S. Risk factors for surgical site infection following cesarean section in a Brazilian Women’s Hospital: A case-control study. Braz. J. Infect. Dis. 2015;19:113–117. doi: 10.1016/j.bjid.2014.09.009.
    1. Nguyen D.P., Gerber S., Hohlfeld P., Sandrine G., Witkin S.S. Mycoplasma hominis in mid-trimester amniotic fluid: Relation to pregnancy outcome. J. Perinat. Med. 2004;32:323–326. doi: 10.1515/JPM.2004.060.
    1. Cassell G.H., Davis R.O., Waites K.B., Brown M.B., Marriott P.A., Stagno S., Davis J.K. Isolation of Mycoplasma hominis and Ureaplasma urealyticum from amniotic fluid at 16–20 weeks of gestation: Potential effect on outcome of pregnancy. Sex. Transm. Dis. 1983;10:294–302.
    1. Bearfield C., Davenport E.S., Sivapathasundaram V., Allaker R.P. Possible association between amniotic fluid micro-organism infection and microflora in the mouth. BJOG. 2002;109:527–533. doi: 10.1111/j.1471-0528.2002.01349.x.
    1. Jimenez E., Fernandez L., Marin M.L., Martin R., Odriozola J.M., Nueno-Palop C., Narbad A., Olivares M., Xaus J., Rodriguez J.M. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr. Microbiol. 2005;51:270–274. doi: 10.1007/s00284-005-0020-3.
    1. Steel J.H., Malatos S., Kennea N., Edwards A.D., Miles L., Duggan P., Reynolds P.R., Feldman R.G., Sullivan M.H. Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr. Res. 2005;57:404–411. doi: 10.1203/01.PDR.0000153869.96337.90.
    1. Gomez de Aguero M., Ganal-Vonarburg S.C., Fuhrer T., Rupp S., Uchimura Y., Li H., Steinert A., Heikenwalder M., Hapfelmeier S., Sauer U., et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296–1302. doi: 10.1126/science.aad2571.
    1. Koleva P.T., Kim J.S., Scott J.A., Kozyrskyj A.L. Microbial programming of health and disease starts during fetal life. Birth Defects Res. C Embryo Today. 2015;105:265–277. doi: 10.1002/bdrc.21117.
    1. Hansen R., Scott K.P., Khan S., Martin J.C., Berry S.H., Stevenson M., Okpapi A., Munro M.J., Hold G.L. First-Pass Meconium Samples from Healthy Term Vaginally-Delivered Neonates: An Analysis of the Microbiota. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0133320.
    1. Sunderarajan K., Kelkar S.S. Bacterial flora of meconium and faeces during the first year of life. Indian J. Pediatr. 1979;46:92–95. doi: 10.1007/BF02827357.

Source: PubMed

3
구독하다