Evaluation of the Effects of Repeat-Dose Dabrafenib on the Single-Dose Pharmacokinetics of Rosuvastatin (OATP1B1/1B3 Substrate) and Midazolam (CYP3A4 Substrate)

Noelia Nebot, Christina S Won, Victor Moreno, Eva Muñoz-Couselo, Dung-Yang Lee, Eduard Gasal, Emmanuel Bouillaud, Noelia Nebot, Christina S Won, Victor Moreno, Eva Muñoz-Couselo, Dung-Yang Lee, Eduard Gasal, Emmanuel Bouillaud

Abstract

Dabrafenib is an oral BRAF kinase inhibitor approved for the treatment of various BRAF V600 mutation-positive solid tumors. In vitro observations suggesting cytochrome P450 (CYP) 3A induction and organic anion transporting polypeptide (OATP) inhibition prompted us to evaluate the effect of dabrafenib 150 mg twice daily on the pharmacokinetics of midazolam 3 mg (CYP3A substrate) and rosuvastatin 10 mg (OATP1B1/1B3 substrate) in a clinical phase 1, open-label, fixed-sequence study in patients with BRAF V600 mutation-positive tumors. Repeat dabrafenib dosing resulted in a 2.56-fold increase in rosuvastatin maximum observed concentration (Cmax ), an earlier time to Cmax , but only a 7% increase in area under the concentration-time curve from time 0 (predose) extrapolated to infinite time. Midazolam Cmax and AUC extrapolated to infinite time decreased by 47% and 65%, respectively, with little effect on time to Cmax . No new safety findings were reported. Exposure of drugs that are CYP3A4 substrates is likely to decrease when coadministered with dabrafenib. Concentrations of medicinal products that are sensitive OATP1B1/1B3 substrates may increase during the absorption phase.

Trial registration: ClinicalTrials.gov NCT02082665.

Keywords: CYP3A4; OATP; dabrafenib; drug interaction; pharmacokinetics; transporters.

Conflict of interest statement

N.N., C.S.W., and D.‐Y.L. are former employees of Novartis and have nothing to disclose beyond their current affiliation. V.M. reports personal fees from Bristol Myers Squibb, Janssen, and Bayer, outside the submitted work. E.G. is an employee of Novartis and reports stocks in Novartis. E.B. is an employee of Novartis. E.M.‐C. declares no conflict of interest.

© 2021 The Authors. Clinical Pharmacology in Drug Development published by Wiley Periodicals LLC on behalf of American College of Clinical Pharmacology.

Figures

Figure 1
Figure 1
Study design. PK, pharmacokinetic.
Figure 2
Figure 2
Mean rosuvastatin concentration‐time profiles after administration of rosuvastatin alone (PK day 1), coadministration with dabrafenib at initiation of dosing (PK day 8), and after repeat‐dose administration of dabrafenib at steady state (PK day 22). PK, pharmacokinetic.
Figure 3
Figure 3
Mean midazolam concentration‐time profiles after administration of midazolam alone (PK day 1), coadministration with dabrafenib at initiation of dosing (PK day 8), and after repeat‐dose administration of dabrafenib at steady state (PK day 22). PK, pharmacokinetic.

References

    1. Ouellet D, Grossmann KF, Limentani G, et al. Effects of particle size, food, and capsule shell composition on the oral bioavailability of dabrafenib, a BRAF inhibitor, in patients with BRAF mutation‐positive tumors. J Pharm Sci. 2013;102(9):3100‐3109.
    1. Denton CL, Minthorn E, Carson SW, et al. Concomitant oral and intravenous pharmacokinetics of dabrafenib, a BRAF inhibitor, in patients with BRAF V600 mutation–positive solid tumors. J Clin Pharmacol. 2013;53(9):955‐961.
    1. Bershas DA, Ouellet D, Mamaril‐Fishman DB, et al. Metabolism and disposition of oral dabrafenib in cancer patients: proposed participation of aryl nitrogen in carbon‐carbon bond cleavage via decarboxylation following enzymatic oxidation. Drug Metab Dispos. 2013;41(12):2215‐2224.
    1. Lawrence SK, Nguyen D, Bowen C, Richards‐Peterson L, Skordos KW. The metabolic drug‐drug interaction profile of dabrafenib: in vitro investigations and quantitative extrapolation of the P450‐mediated DDI risk. Drug Metab Dispos. 2014;42(7):1180‐1190.
    1. Ouellet D, Gibiansky E, Leonowens C, et al. Population pharmacokinetics of dabrafenib, a BRAF inhibitor: effect of dose, time, covariates, and relationship with its metabolites. J Clin Pharmacol. 2014;54(6):696‐706.
    1. Suttle AB, Grossmann KF, Ouellet D, et al. Assessment of the drug interaction potential and single‐ and repeat‐dose pharmacokinetics of the BRAF inhibitor dabrafenib. J Clin Pharmacol. 2015;55(4):392‐400.
    1. Ellens H, Johnson M, Lawrence SK, Watson C, Chen L, Richards‐Peterson LE. Prediction of the transporter‐mediated drug‐drug interaction potential of dabrafenib and its major circulating metabolites. Drug Metab Dispos. 2017;45(6):646‐656.
    1. Creusot N, Gassiot M, Alaterre E, et al. The anti‐cancer drug dabrafenib is a potent activator of the human pregnane X receptor. Cells. 2020;9(7):1641.
    1. US Food and Drug Administration . Clinical drug interaction studies — cytochrome P450 enzyme‐ and transporter‐mediated drug interactions. 2020. . Accessed January 22, 2020.
    1. McFeely SJ, Ritchie TK, Yu J, Nordmark A, Levy RH, Ragueneau‐Majlessi I. Identification and evaluation of clinical substrates of organic anion transporting polypeptides 1B1 and 1B3. Clin Transl Sci. 2019;12(4):379‐387.
    1. Halama B, Hohmann N, Burhenne J, Weiss J, Mikus G, Haefeli WE. A nanogram dose of the CYP3A probe substrate midazolam to evaluate drug interactions. Clin Pharmacol Ther. 2013;93(6):564‐571.
    1. Ihunnah CA, Jiang M, Xie W. Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim Biophys Acta. 2011;1812(8):956‐963.
    1. Meyer zu Schwabedissen HE, Kim RB. Hepatic OATP1B transporters and nuclear receptors PXR and CAR: interplay, regulation of drug disposition genes, and single nucleotide polymorphisms. Mol Pharm. 2009;6(6):1644‐1661.
    1. Hirano M, Maeda K, Matsushima S, Nozaki Y, Kusuhara H, Sugiyama Y. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol. 2005;68(3):800‐807.
    1. Huang L, Wang Y, Grimm S. ATP‐dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab Dispos. 2006;34(5):738‐742.
    1. Pham PA, la Porte CJ, Lee LS, et al. Differential effects of tipranavir plus ritonavir on atorvastatin or rosuvastatin pharmacokinetics in healthy volunteers. Antimicrob Agents Chemother. 2009;53(10):4385‐4392.
    1. Higgins JW, Bao JQ, Ke AB, et al. Utility of Oatp1a/1b‐knockout and OATP1B1/3‐humanized mice in the study of OATP‐mediated pharmacokinetics and tissue distribution: case studies with pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein. Drug Metab Dispos. 2014;42(1):182‐192.
    1. Schneck DW, Birmingham BK, Zalikowski JA, et al. The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. Clin Pharmacol Ther. 2004;75(5):455‐463.
    1. Matsson P, Englund G, Ahlin G, Bergstrom CA, Norinder U, Artursson P. A global drug inhibition pattern for the human ATP‐binding cassette transporter breast cancer resistance protein (ABCG2). J Pharmacol Exp Ther. 2007;323(1):19‐30.
    1. Weiss J, Rose J, Storch CH, et al. Modulation of human BCRP (ABCG2) activity by anti‐HIV drugs. J Antimicrob Chemother. 2007;59(2):238‐245.
    1. Alam K, Crowe A, Wang X, et al. Regulation of organic anion transporting polypeptides (OATP) 1B1‐ and OATP1B3‐mediated transport: an updated review in the context of OATP‐mediated drug‐drug interactions. Int J Mol Sci. 2018;19(3):855.
    1. Backman JT, Kyrklund C, Kivistö KT, Wang JS, Neuvonen PJ. Plasma concentrations of active simvastatin acid are increased by gemfibrozil. Clin Pharmacol Ther. 2000;68(2):122‐129.
    1. Kyrklund C, Backman JT, Kivistö KT, Neuvonen M, Laitila J, Neuvonen PJ. Plasma concentrations of active lovastatin acid are markedly increased by gemfibrozil but not by bezafibrate. Clin Pharmacol Ther. 2001;69(5):340‐345.
    1. Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin Pharmacol Ther. 2003;73(6):538‐544.
    1. Mathew P, Cuddy T, Tracewell WG, Salazar D. An open‐label study on the pharmacokinetics (PK) of pitavastatin (NK‐104) when administered concomitantly with fenofibrate or gemfibrozil in healthy volunteers. Clin Pharmacol Ther. 2004;75(2):33.
    1. Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid‐lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006;80(6):565‐581.
    1. Backman JT, Luurila H, Neuvonen M, Neuvonen PJ. Rifampin markedly decreases and gemfibrozil increases the plasma concentrations of atorvastatin and its metabolites. Clin Pharmacol Ther. 2005;78(2):154‐167.
    1. Spence JD, Munoz CE, Hendricks L, Latchinian L, Khouri HE. Pharmacokinetics of the combination of fluvastatin and gemfibrozil. Am J Cardiol. 1995;76(2):80A‐83A.
    1. Zhang W, Deng S, Chen XP, et al. Pharmacokinetics of rosuvastatin when coadministered with rifampicin in healthy males: a randomized, single‐blind, placebo‐controlled, crossover study. Clin Ther. 2008;30(7):1283‐1289.
    1. Rowland A, van Dyk M, Hopkins AM, et al. Physiologically based pharmacokinetic modeling to identify physiological and molecular characteristics driving variability in drug exposure. Clin Pharmacol Ther. 2018;104(6):1219‐1228.
    1. Falchook GS, Long GV, Kurzrock R, et al. Dose selection, pharmacokinetics, and pharmacodynamics of BRAF inhibitor dabrafenib (GSK2118436). Clin Cancer Res. 2014;20(17):4449‐4458.

Source: PubMed

3
구독하다