The effect of galvanization and potassium iodide iontophoresis of the throat and larynx on thyroid parameters: a randomized controlled trial

Jolanta Zwolińska, Barbara Augustyn, Katarzyna Baj, Jadwiga Krukowska, Jolanta Zwolińska, Barbara Augustyn, Katarzyna Baj, Jadwiga Krukowska

Abstract

Few studies have assessed the application and side effects of potassium iodide (KI) iontophoresis. Using a double-blinded randomized controlled trial with a 1:1 parallel-group, we investigated the effect of galvanization and the KI iontophoresis in the throat and larynx on three thyroid parameters. A total of 50 healthy volunteers with normal TSH, FT3, and FT4 levels and lacking focal changes in the thyroid ultrasonography were subjected to 10 electrotherapy treatments. The TSH, FT3, and FT4 levels were determined prior to the 10 electrotherapeutic treatments (T1), 2-weeks after treatment (T2) and 6-months after treatment (T3). At T2 and T3, both groups had normal levels of TSH, FT3, and FT4. Regarding the change of TSH, FT3, and FT4 levels between T1 vs. T2 and T1 vs. T3, no significant differences between the galvanization and iontophoresis groups were found. However, both groups had lower levels of all three hormones at T3. Together, these data indicate that KI iontophoresis does not affect thyroid hormone levels in the short- nor long-term. Additional follow-up studies with larger groups are required to better confirm the safety of galvanization and iontophoresis procedures in the pharynx and larynx.Trial registration ClinicalTrials.gov (NCT04013308; URL: www.clinicaltrials.gov ). Day of first registration 09/07/2019.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Figure 1
Figure 1
Design and flow of participants in the study.

References

    1. Spitzweg C, Heufelder AE, Morris JC. Thyroid iodine transport. Thyroid. 2000;10(4):321–330. doi: 10.1089/thy.2000.10.321.
    1. Leung AM, Braverman LE. Iodine-induced thyroid dysfunction. Curr. Opin. Endocrinol. Diabetes Obes. 2012;19(5):414–419. doi: 10.1097/MED.0b013e3283565bb2.
    1. Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015;3(4):286–295. doi: 10.1016/S2213-8587(14)70225-6.
    1. Gietka-Czernel M. Iodine prophylaxis. Post Nauk Med. 2015;28(12):839–845.
    1. Laurberg P, et al. Iodine intake as a determinant of thyroid disorders in populations. Best Pract. Res. Clin. Endocrinol. Metab. 2010;24(1):13–27. doi: 10.1016/j.beem.2009.08.013.
    1. Yuqian L, et al. Iodine excess as an environmental risk factor for autoimmune thyroid disease. Int. J. Mol. Sci. 2014;15(7):12895–12912. doi: 10.3390/ijms150712895.
    1. Karpińska J, Kryszałowicz B, Błachowicz A, Franek E. Primary, secondary and iatrogenic thyroid dysfunction. Chor Serca Naczyń. 2007;4(1):48–53.
    1. Kluesner JK, et al. Analysis of current thyroid function test ordering practices. J. Eval. Clin. Pract. 2018;24:347–352. doi: 10.1111/jep.12846.
    1. Barhanovic NG, Antunovic T, Kavaric S, Djogo A, Kalimanovska V. Age and assay related changes of laboratory thyroid function tests in the reference female population. J. Med. Biochem. 2019;38:22–32. doi: 10.2478/jomb-2018-0020.
    1. Shui-Boon S, Tar-Choon A. Laboratory testing in thyroid conditions-pitfalls and clinical. Utility Ann. Lab. Med. 2019;39(1):3–14. doi: 10.3343/alm.2019.39.1.3.
    1. Śliwiński Z, Sieroń A. Great Physiotherapy. Elselvier Urban & Partner; 2014.
    1. Mika T, Kasprzak W. Physical Therapy. PZWL Wydawnictwo Lekarskie; 2019.
    1. Mikołajewska E. Elements of Physiotherapy Physical Therapy for Practitioners. PZWL Wydawnictwo Lekarskie; 2011.
    1. Cameron MH. Physical Agents in Rehabilitation: From Research to Practice. Saunders; 2013.
    1. Zimmer-Nowicka J, Zasada M, Kaczmarczyk D, Morawiec-Sztandera A. Analysis of indications and evaluation of the frequency of physiotherapeutic procedures of the larynx and pharynx in selected rehabilitation offices. Otorynolaryngologia. 2010;9(3):127–133.
    1. Straburzyńska-Lupa A, Straburzyński G. Physiotherapy. PZWL Wydawnictwo Lekarskie; 2007.
    1. Jaśkiewicz J, Bromboszcz J, Włoch T, Piekarz A, Blachura L. Iontophoresis and phonophoresis Theoretical basis and practical application. Reh Med. 2000;4:29–45.
    1. Drygalski M, Bożek M, Bielecki T, Gaździk TS. The use of electrostimulation in the treatment of soft tissue and bone damage. Ortho & Trauma. 2016;3(3):35–46.
    1. Chajęcka-Wierzchowska W, Zadernowska A, Łaniewska-Trokenheim Ł. Resistance to antibiotics of food-borne enterococcus bacteria. Kosmos. 2017;66(1):67–79.
    1. Senderowska J, Muszyńska A. Rational antibiotic therapy in primary care. Fam. Med. Primary Care Rev. 2013;15(3):389–390.
    1. Dziekiewicz M, Albrecht P. Rational antibiotic therapy according to the National Antibiotic Protection Program—Selected issues. Lekarz POZ. 2016;4:323–327.
    1. Mnich ZS, Kostrzewska A, Czyżewska E. Podstawy fizyczne i biofizyczne elektroterapii (Physical and biophysical basics of electrotherapy) In: Kwolek A, editor. Rehabilitacja Medyczna (Medical Rehabilitation) Urban & Partner; 2003. pp. 111–146.
    1. Puttemans FJ, Massart DL, Gilles F, Lievens PC, Jonckeer MH. Iontophoresis: Mechanism of action studied by potentiometry and X-ray fluorescence. Arch. Phys. Med. Rehabil. 1982;63(4):176–180.
    1. Verger P, Aurengo A, Geoffroy B, Le Guen B. Iodine kinetics and effectiveness of stable iodine prophylaxis after intake of radioactive iodine: A review. Thyroid. 2001;11(4):353–360. doi: 10.1089/10507250152039082.
    1. Zanzonico PB, Becker DV. Effects of time of administration and dietary iodine levels on potassium iodide (ki) blockade of thyroid irradiation by 131i from radioactive fallout. Health Phys. Radiat. Saf. J. 2007;78(6):660–667. doi: 10.1097/00004032-200006000-00008.
    1. Bacher K, et al. Thyroid uptake and radiation dose after 131I-lipiodol treatment: Is thyroid blocking by potassium iodide necessary? Eur. J. Nucl. Med. Mol. Imaging. 2002;29(10):1311–1316. doi: 10.1007/s00259-002-0917-z.
    1. Gartner W, Weissel M. Do iodine-containing contrast media induce clinically relevant changes in thyroid function parameters of euthyroid patients within the first week? Thyroid. 2004;14(7):521–524. doi: 10.1089/1050725041517075.
    1. Kim M, et al. Comparison of image quality of abdominopelvic CT in paediatric patients: Low osmolar contrast media versus less iodine-containing iso-osmolar contrast media at different peak kilovoltages. Clin. Radiol. 2019;74(11):e9–e16. doi: 10.1016/j.crad.2019.06.027.
    1. Kloska SP, et al. Comparison of different iodine concentration contrast media in perfusion computed tomography of the brain: Is high iodine concentration useful? Investig. Radiol. 2007;42(8):564–568. doi: 10.1097/RLI.0b013e318042b608.
    1. Chen Y, et al. Iodine nutrition and thyroid function in pregnant women exposed to different iodine sources. Biol. Trace Elem. Res. 2019;190(1):52–59. doi: 10.1007/s12011-018-1530-8.
    1. Pearce EN, Andersson M, Zimmermann MB. Global iodine nutrition: Where do we stand in 2013? Thyroid. 2013;5(23):523–528. doi: 10.1089/thy.2013.0128.
    1. Dechent D, et al. Direct current electrical injuries: A systematic review of case reports and case series. Burns. 2020;46(2):267–278. doi: 10.1016/j.burns.2018.11.020.
    1. Song B, et al. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat. Protoc. 2007;2(6):1479–1489. doi: 10.1038/nprot.2007.205.
    1. Gierlotka S. Effects of electric shock. Bezp Pr Nauk Prakt. 2006;9:30–32.
    1. Geddes LA, Roeder RA. Direct-current injury: Electrochemical aspects. J. Clin. Monit. 2004;18:157–161. doi: 10.1023/B:JOCM.0000042923.00392.a8.

Source: PubMed

3
구독하다