Proteomic profiling of follicular and papillary thyroid tumors

Anastasios Sofiadis, Susanne Becker, Ulf Hellman, Lina Hultin-Rosenberg, Andrii Dinets, Mykola Hulchiy, Jan Zedenius, Göran Wallin, Theodoros Foukakis, Anders Höög, Gert Auer, Janne Lehtiö, Catharina Larsson, Anastasios Sofiadis, Susanne Becker, Ulf Hellman, Lina Hultin-Rosenberg, Andrii Dinets, Mykola Hulchiy, Jan Zedenius, Göran Wallin, Theodoros Foukakis, Anders Höög, Gert Auer, Janne Lehtiö, Catharina Larsson

Abstract

Objective: Thyroid proteomics is a new direction in thyroid cancer research aiming at etiological understanding and biomarker identification for improved diagnosis.

Methods: Two-dimensional electrophoresis was applied to cytosolic protein extracts from frozen thyroid samples (ten follicular adenomas, nine follicular carcinomas, ten papillary carcinomas, and ten reference thyroids). Spots with differential expression were revealed by image and multivariate statistical analyses, and identified by mass spectrometry.

Results: A set of 25 protein spots significant for discriminating between the sample groups was identified. Proteins identified for nine of these spots were studied further including 14-3-3 protein beta/alpha, epsilon, and zeta/delta, peroxiredoxin 6, selenium-binding protein 1, protein disulfide-isomerase precursor, annexin A5 (ANXA5), tubulin alpha-1B chain, and α1-antitrypsin precursor. This subset of protein spots carried the same predictive power in differentiating between follicular carcinoma and adenoma or between follicular and papillary carcinoma, as compared with the larger set of 25 spots. Protein expression in the sample groups was demonstrated by western blot analyses. For ANXA5 and the 14-3-3 proteins, expression in tumor cell cytoplasm was demonstrated by immunohistochemistry both in the sample groups and an independent series of papillary thyroid carcinomas.

Conclusion: The proteins identified confirm previous findings in thyroid proteomics, and suggest additional proteins as dysregulated in thyroid tumors.

Figures

Figure 1
Figure 1
Graphical presentation of the performance of the PLS-DA models built for the comparison between FTA and FTC (A) and between FTC and PTC (B). The continuous lines correspond to spots selected after vip-score ranking, whereas dotted lines correspond to random spot selection. (lat.var., latent variable; vip, variable importance on projection; and rnd, random).
Figure 2
Figure 2
Image of a silver-stained 2-DE gel. The 25 spots selected from the FTA–FTC model are indicated by circles (total overlap with the 18 spots from the FTC–PTC model). The numbers shown correspond to the standard spot number automatically assigned to each spot by the image analysis software (PDQuest). Spot numbers followed by an asterisk refer to the nine spots selected for further validation.
Figure 3
Figure 3
Graphical representation of individual spot intensities for the 25 spots identified by PLS-DA across all separate gels included in the study. Below each graph is given either the full or the abbreviated name of the corresponding protein identified by MALDI-TOF-MS (see Table 1). FTA, follicular thyroid adenoma; FTC, follicular thyroid carcinoma; Ref thyr, reference thyroid; and PTC, papillary thyroid carcinoma.
Figure 4
Figure 4
Western blots illustrating expression of the nine selected proteins in samples from each study group (reference thyroid, FTA, FTC, and PTC). β-Actin was used as control of protein loading and quality in all analyses.
Figure 5
Figure 5
Immunohistochemical analysis of protein expression for 14-3-3 (isoforms: β/α, ϵ and ζ/δ) and ANXA5. (A) Photomicrographs in 40× magnification of paraffin sections where predominantly cytosolic staining is visualized for 14-3-3 and ANXA5 in the different sample groups. (B) Photomicrographs in 10× magnification for 14-3-3 and 16× magnification for ANXA5 analysis on paraffin sections of PTC with CLT visualizing non-stained lymphocytes together with positively stained tumor cells.

References

    1. Tumours of the thyroid and parathyroid. In WHO Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs, pp 49–133. Eds RA DeLellis, RV Lloyd, PU Heitz & C Eng. Lyon: IARC Press, 2004.
    1. Damante G, Scaloni A, Tell G. Thyroid tumors: novel insights from proteomic studies. Expert Review of Proteomics. 2009;6:363–376. doi: 10.1586/epr.09.51.
    1. Lui WO, Zeng L, Rehrmann V, Deshpande S, Tretiakova M, Kaplan EL, Leibiger I, Leibiger B, Enberg U, Hoog A, Larsson C, Kroll TG. CREB3L2-PPARgamma fusion mutation identifies a thyroid signaling pathway regulated by intramembrane proteolysis. Cancer Research. 2008;68:7156–7164. doi: 10.1158/0008-5472.CAN-08-1085.
    1. Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Review of Molecular Diagnostics. 2008;8:83–95. doi: 10.1586/14737159.8.1.83.
    1. Barden CB, Shister KW, Zhu B, Guiter G, Greenblatt DY, Zeiger MA, Fahey TJ., III Classification of follicular thyroid tumors by molecular signature: results of gene profiling. Clinical Cancer Research. 2003;9:1792–1800.
    1. Finley DJ, Zhu B, Barden CB, Fahey TJ., III Discrimination of benign and malignant thyroid nodules by molecular profiling. Annals of Surgery. 2004;240:425–436. doi: 10.1097/01.sla.0000137128.64978.bc. discussion 436–427.
    1. Mazzanti C, Zeiger MA, Costouros NG, Umbricht C, Westra WH, Smith D, Somervell H, Bevilacqua G, Alexander HR, Libutti SK. Using gene expression profiling to differentiate benign versus malignant thyroid tumors. Cancer Research. 2004;64:2898–2903. doi: 10.1158/0008-5472.CAN-03-3811.
    1. Lui WO, Foukakis T, Liden J, Thoppe SR, Dwight T, Hoog A, Zedenius J, Wallin G, Reimers M, Larsson C. Expression profiling reveals a distinct transcription signature in follicular thyroid carcinomas with a PAX8–PPAR(gamma) fusion oncogene. Oncogene. 2005;24:1467–1476. doi: 10.1038/sj.onc.1208135.
    1. Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology. 1996;14:61–65. doi: 10.1038/nbt0196-61.
    1. de Hoog CL, Mann M. Proteomics. Annual Review of Genomics and Human Genetics. 2004;5:267–293. doi: 10.1146/annurev.genom.4.070802.110305.
    1. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Molecular & Cellular Proteomics. 2004;3:960–969. doi: 10.1074/mcp.M400055-MCP200.
    1. de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F, Walther TC, Mann M. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature. 2008;455:1251–1254. doi: 10.1038/nature07341.
    1. Brown LM, Helmke SM, Hunsucker SW, Netea-Maier RT, Chiang SA, Heinz DE, Shroyer KR, Duncan MW, Haugen BR. Quantitative and qualitative differences in protein expression between papillary thyroid carcinoma and normal thyroid tissue. Molecular Carcinogenesis. 2006;45:613–626. doi: 10.1002/mc.20193.
    1. Krause K, Karger S, Schierhorn A, Poncin S, Many MC, Fuhrer D. Proteomic profiling of cold thyroid nodules. Endocrinology. 2007;148:1754–1763. doi: 10.1210/en.2006-0752.
    1. Moretz WH, III, Gourin CG, Terris DJ, Xia ZS, Liu Z, Weinberger PM, Chin E, Adam BL. Detection of papillary thyroid carcinoma with serum protein profile analysis. Archives of Otolaryngology – Head & Neck Surgery. 2008;134:198–202. doi: 10.1001/archoto.2007.34.
    1. Netea-Maier RT, Hunsucker SW, Hoevenaars BM, Helmke SM, Slootweg PJ, Hermus AR, Haugen BR, Duncan MW. Discovery and validation of protein abundance differences between follicular thyroid neoplasms. Cancer Research. 2008;68:1572–1580. doi: 10.1158/0008-5472.CAN-07-5020.
    1. Wang JX, Yu JK, Wang L, Liu QL, Zhang J, Zheng S. Application of serum protein fingerprint in diagnosis of papillary thyroid carcinoma. Proteomics. 2006;6:5344–5349. doi: 10.1002/pmic.200500833.
    1. Krause K, Jessnitzer B, Fuhrer D. Proteomics in thyroid tumor research. Journal of Clinical Endocrinology and Metabolism. 2009;94:2717–2724. doi: 10.1210/jc.2009-0308.
    1. Sofiadis A, Dinets A, Orre LM, Branca RM, Juhlin CC, Foukakis T, Wallin G, Hoog A, Hulchiy M, Zedenius J, Larsson C, Lehtio J. Proteomic study of thyroid tumors reveals frequent up-regulation of the Ca2+-binding protein S100A6 in papillary thyroid carcinoma. Thyroid. 2010;20:1067–1076. doi: 10.1089/thy.2009.0400.
    1. Forsberg L, Larsson C, Sofiadis A, Lewensohn R, Hoog A, Lehtio J. Pre-fractionation of archival frozen tumours for proteomics applications. Journal of Biotechnology. 2006;126:582–586. doi: 10.1016/j.jbiotec.2006.05.020.
    1. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3.
    1. Hellman K, Alaiya AA, Becker S, Lomnytska M, Schedvins K, Steinberg W, Hellstrom AC, Andersson S, Hellman U, Auer G. Differential tissue-specific protein markers of vaginal carcinoma. British Journal of Cancer. 2009;100:1303–1314. doi: 10.1038/sj.bjc.6604975.
    1. Rabilloud T, Vuillard L, Gilly C, Lawrence JJ. Silver-staining of proteins in polyacrylamide gels: a general overview. Cellular and Molecular Biology. 1994;40:57–75.
    1. Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics and Intelligent Laboratory Systems. 1987;2:37–52. doi: 10.1016/0169-7439(87)80084-9.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B, Statistical Methodology. 1995;57:289–300.
    1. Geladi P, Kowalski B. Partial least-squares regression – a tutorial. Analytica Chimica Acta. 1986;185:1–17. doi: 10.1016/0003-2670(86)80028-9.
    1. Wold S, Sjöstrom M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems. 2001;58:109–130. doi: 10.1016/S0169-7439(01)00155-1.
    1. Wold S, Johansson E & Gocchi M. PLS – partial least-squares projections to latent structures. In 3D QSAR in Drug Design; Theory, Methods and Applications, pp 523–550. Ed HK Dordrecht. The Netherlands: Kluwer Academic Publishers, 1993.
    1. Efron B. Estimating the error rate of a prediction rule – improvement on cross-validation. Journal of the American Statistical Association. 1983;78:316–331. doi: 10.2307/2288636.
    1. Krause K, Schierhorn A, Sinz A, Wissmann JD, Beck-Sickinger AG, Paschke R, Fuhrer D. Toward the application of proteomics to human thyroid tissue. Thyroid. 2006;16:1131–1143. doi: 10.1089/thy.2006.16.1131.
    1. Petrak J, Ivanek R, Toman O, Cmejla R, Cmejlova J, Vyoral D, Zivny J, Vulpe CD. Deja vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics. 2008;8:1744–1749. doi: 10.1002/pmic.200700919.
    1. Srisomsap C, Subhasitanont P, Otto A, Mueller EC, Punyarit P, Wittmann-Liebold B, Svasti J. Detection of cathepsin B up-regulation in neoplastic thyroid tissues by proteomic analysis. Proteomics. 2002;2:706–712. doi: 10.1002/1615-9861(200206)2:6%3C706::AID-PROT706%;2-E.
    1. Giusti L, Iacconi P, Ciregia F, Giannaccini G, Donatini GL, Basolo F, Miccoli P, Pinchera A, Lucacchini A. Fine-needle aspiration of thyroid nodules: proteomic analysis to identify cancer biomarkers. Journal of Proteome Research. 2008;7:4079–4088. doi: 10.1021/pr8000404.
    1. Morrison DK. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends in Cell Biology. 2009;19:16–23. doi: 10.1016/j.tcb.2008.10.003.
    1. Ito Y, Yoshida H, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Nakamura Y, Kakudo K, Kuma K, Miyauchi A. Caveolin-1 and 14-3-3 sigma expression in follicular variant of thyroid papillary carcinoma. Pathology, Research and Practice. 2005;201:545–549. doi: 10.1016/j.prp.2005.08.002.
    1. Ito Y, Miyoshi E, Uda E, Yoshida H, Uruno T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Matsuura N, Kakudo K, Kuma K, Miyauchi A. 14-3-3 Sigma possibly plays a constitutive role in papillary carcinoma, but not in follicular tumor of the thyroid. Cancer Letters. 2003;200:161–166. doi: 10.1016/S0304-3835(03)00282-9.
    1. Lal G, Padmanabha L, Provenzano M, Fitzgerald M, Weydert J, Domann FE. Regulation of 14-3-3sigma expression in human thyroid carcinoma is epigenetically regulated by aberrant cytosine methylation. Cancer Letters. 2008;267:165–174. doi: 10.1016/j.canlet.2008.03.017.
    1. Blankenberg FG. In vivo detection of apoptosis. Journal of Nuclear Medicine. 2008;49(Suppl 2):81S–95S. doi: 10.2967/jnumed.107.045898.
    1. Alfonso P, Canamero M, Fernandez-Carbonie F, Nunez A, Casal JI. Proteome analysis of membrane fractions in colorectal carcinomas by using 2D-DIGE saturation labeling. Journal of Proteome Research. 2008;7:4247–4255. doi: 10.1021/pr800152u.
    1. Srisomsap C, Sawangareetrakul P, Subhasitanont P, Chokchaichamnankit D, Chiablaem K, Bhudhisawasdi V, Wongkham S, Svasti J. Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes. Journal of Biomedicine & Biotechnology. 2010;2010:437143. doi: 10.1155/2010/437143.
    1. Thongwatchara P, Promwikorn W, Srisomsap C, Chokchaichamnankit D, Boonyaphiphat P, Thongsuksai P. Differential protein expression in primary breast cancer and matched axillary node metastasis. Oncology Reports. 2012;26:185–191. doi: 10.3892/or.2011.1266.
    1. Chang PW, Tsui SK, Liew C, Lee CC, Waye MM, Fung KP. Isolation, characterization, and chromosomal mapping of a novel cDNA clone encoding human selenium binding protein. Journal of Cellular Biochemistry. 1997;64:217–224. doi: 10.1002/(SICI)1097-4644(199702)64:2%3C217::AID-JCB5%;2-#.
    1. Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxidants & Redox Signaling. 2007;9:775–806. doi: 10.1089/ars.2007.1528.
    1. Chen G, Wang H, Miller CT, Thomas DG, Gharib TG, Misek DE, Giordano TJ, Orringer MB, Hanash SM, Beer DG. Reduced selenium-binding protein 1 expression is associated with poor outcome in lung adenocarcinomas. Journal of Pathology. 2004;202:321–329. doi: 10.1002/path.1524.
    1. Li LS, Kim H, Rhee H, Kim SH, Shin DH, Chung KY, Park KS, Paik YK, Chang J. Proteomic analysis distinguishes basaloid carcinoma as a distinct subtype of nonsmall cell lung carcinoma. Proteomics. 2004;4:3394–3400. doi: 10.1002/pmic.200400901.
    1. Kim H, Kang HJ, You KT, Kim SH, Lee KY, Kim TI, Kim C, Song SY, Kim HJ, Lee C. Suppression of human selenium-binding protein 1 is a late event in colorectal carcinogenesis and is associated with poor survival. Proteomics. 2006;6:3466–3476. doi: 10.1002/pmic.200500629.
    1. Huang KC, Park DC, Ng SK, Lee JY, Ni X, Ng WC, Bandera CA, Welch WR, Berkowitz RS, Mok SC, Ng SW. Selenium binding protein 1 in ovarian cancer. International Journal of Cancer. 2006;118:2433–2440. doi: 10.1002/ijc.21671.
    1. He QY, Cheung YH, Leung SY, Yuen ST, Chu KM, Chiu JF. Diverse proteomic alterations in gastric adenocarcinoma. Proteomics. 2004;4:3276–3287. doi: 10.1002/pmic.200300916.
    1. Silvers AL, Lin L, Bass AJ, Chen G, Wang Z, Thomas DG, Lin J, Giordano TJ, Orringer MB, Beer DG, Chang AC. Decreased selenium-binding protein 1 in esophageal adenocarcinoma results from posttranscriptional and epigenetic regulation and affects chemosensitivity. Clinical Cancer Research. 2010;16:2009–2021. doi: 10.1158/1078-0432.CCR-09-2801.
    1. Zhang B, Wang Y, Su Y. Peroxiredoxins, a novel target in cancer radiotherapy. Cancer Letters. 2009;286:154–160. doi: 10.1016/j.canlet.2009.04.043.
    1. Kinnula VL, Lehtonen S, Sormunen R, Kaarteenaho-Wiik R, Kang SW, Rhee SG, Soini Y. Overexpression of peroxiredoxins I, II, III, V, and VI in malignant mesothelioma. Journal of Pathology. 2002;196:316–323. doi: 10.1002/path.1042.
    1. Fujita Y, Nakanishi T, Hiramatsu M, Mabuchi H, Miyamoto Y, Miyamoto A, Shimizu A, Tanigawa N. Proteomics-based approach identifying autoantibody against peroxiredoxin VI as a novel serum marker in esophageal squamous cell carcinoma. Clinical Cancer Research. 2006;12:6415–6420. doi: 10.1158/1078-0432.CCR-06-1315.
    1. Park CK, Kim JH, Moon MJ, Jung JH, Lim SY, Park SH, Kim DG, Jung HW, Cho BK, Paek SH. Investigation of molecular factors associated with malignant transformation of oligodendroglioma by proteomic study of a single case of rapid tumor progression. Journal of Cancer Research and Clinical Oncology. 2008;134:255–262. doi: 10.1007/s00432-007-0282-1.
    1. Karihtala P, Mantyniemi A, Kang SW, Kinnula VL, Soini Y. Peroxiredoxins in breast carcinoma. Clinical Cancer Research. 2003;9:3418–3424.
    1. Gerard AC, Many MC, Daumerie C, Knoops B, Colin IM. Peroxiredoxin 5 expression in the human thyroid gland. Thyroid. 2005;15:205–209. doi: 10.1089/thy.2005.15.205.
    1. Yanagawa T, Ishikawa T, Ishii T, Tabuchi K, Iwasa S, Bannai S, Omura K, Suzuki H, Yoshida H. Peroxiredoxin I expression in human thyroid tumors. Cancer Letters. 1999;145:127–132. doi: 10.1016/S0304-3835(99)00243-8.
    1. Kivirikko KI, Myllyharju J. Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix Biology. 1998;16:357–368. doi: 10.1016/S0945-053X(98)90009-9.
    1. Poon E, Harris AL, Ashcroft M. Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Reviews in Molecular Medicine. 2009;11:e26. doi: 10.1017/S1462399409001173.
    1. Myllyharju J. Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Annals of Medicine. 2008;40:402–417. doi: 10.1080/07853890801986594.

Source: PubMed

3
구독하다