Impact of Exercise on Immunometabolism in Multiple Sclerosis

Remsha Afzal, Jennifer K Dowling, Claire E McCoy, Remsha Afzal, Jennifer K Dowling, Claire E McCoy

Abstract

Multiple Sclerosis (MS) is a chronic, autoimmune condition characterized by demyelinating lesions and axonal degradation. Even though the cause of MS is heterogeneous, it is known that peripheral immune invasion in the central nervous system (CNS) drives pathology at least in the most common form of MS, relapse-remitting MS (RRMS). The more progressive forms' mechanisms of action remain more elusive yet an innate immune dysfunction combined with neurodegeneration are likely drivers. Recently, increasing studies have focused on the influence of metabolism in regulating immune cell function. In this regard, exercise has long been known to regulate metabolism, and has emerged as a promising therapy for management of autoimmune disorders. Hence, in this review, we inspect the role of key immunometabolic pathways specifically dysregulated in MS and highlight potential therapeutic benefits of exercise in modulating those pathways to harness an anti-inflammatory state. Finally, we touch upon current challenges and future directions for the field of exercise and immunometabolism in MS.

Keywords: CNS; EAE; amino acid; exercise; fatty acid metabolism; glycolysis; immunometabolism; mitochondria; multiple sclerosis; oxidative phosphorylation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
An outline of MS immunopathology: MS results from breakdown of the blood-brain barrier (BBB) leading to migration of immune cells into the central nervous system (CNS). These immune cells secrete a range of pro-inflammatory cytokines as well as reactive oxygen and nitrogen species (ROS/RNS), which induce inflammation, formation of sclerotic plaques (lesions), demyelination and axonal degradation. Pathological immune cells in MS include innate immune cells like activated macrophages and resident microglia, autoreactive T-cells (that are activated at peripheral sites, potentially through molecular mimicry, bystander activation or the co-expression of T-cell receptors (TCRs) with different specificities [2]) and antibody producing B-cells. (APC: Antigen-presenting cell); Image made in BiorenderTM (BioRender.com).
Figure 2
Figure 2
An outline of key metabolic pathways altered upon immune cell activation: Cells modify specific metabolic pathways depending on their requirements for activation, growth, development or survival. This capability to shift utilisation of various pathways to generate energy from nutrients like carbohydrates (e.g., glucose), proteins and fats is termed immunometabolism. ATP: Adenosine Triphosphate; LDH: Lactate Dehydrogenase; MCT: Monocarboxylate Transporter; HK: Hexokinase; G-6P: Glucose-6-Phosphate; PGI: Phosphoglucoisomerase; F-6P: Fructose-6-phosphate; PFK1: Phosphofructokinase 1; F-1,6 BP: Fructose 1,6-Bisphosphate; ALDA Aldolase; G-3P: Glyceraldehyde-3-phosphate; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; 1,3 BPG: 1,3-bisphosphoglycerate; PEP: Phosphoenolpyruvate; PK: Pyruvate Kinase; G6PD: Glucose-6-phosphate dehydrogenase; R5BP: Ribulose 1,5-bisphosphate; NADPH: Nicotinamide adenine dinucleotide phosphate; Acetyl CoA: Acetyl coenzyme A; ACLY: ATP citrate lyase; ACC: Acetyl-CoA carboxylase; FAS: Fatty acid synthase; HMGACR: HMG-CoA reductase; IDH: Isocitrate dehydrogenase; SDH: Succinate dehydrogenase; FH: Fumarase; MDH: Malate dehydrogenase; OAA: Oxaloacetate; CS: Citrate Synthase; ACS: Acetyl CoA Synthase; FAO: Fatty Acid Oxidation; CPT: Carnitine palmitoyltransferase; GLUD: Glutamate dehydrogenase; GLS: Glutaminase, NADH: Nicotinamide adenine dinucleotide; FADH2: Flavin adenine dinucleotide, CoQ: Coenzyme Q; Cyt C: Cytochrome C; TCA: Tricarboxylic Acid Cycle. Image made in BiorenderTM.
Figure 3
Figure 3
A summary of the impact glycolysis has on cells in MS: Glycolysis is a major pathway via which glucose is metabolised and generally is involved in activation of various immune cell subsets that are pathological in MS. Activation of immune cells such as in monocytes, macrophages and CD8+ T cells, and differentiation of CD4+ T-cell subsets, such as TH1 and TH17, leads to production of pro-inflammatory cytokines and cytotoxic granules. IL: Interleukin; TNF: Tumor Necrosis Factor; IFN: Interferon; TH: T Helper Cell; TP1: Topoisomerase 1; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; MS: Multiple Sclerosis. Image made in BiorenderTM.
Figure 4
Figure 4
Fatty Acid metabolism in immune cell subtypes: Fatty acid oxidation (FAO) is primarily utilised by immunoregulatory cell types such as anti-inflammatory M2-like macrophages and Treg cells to boost oxidative respiration by their mitochondria, whereas synthesis of fatty acids and cholesterol is increased in effector T-cells and B-cells for differentiation and development as well as in M1-like proinflammatory macrophages. Image made in BiorenderTM.
Figure 5
Figure 5
Mitochondrial metabolism in determining macrophage phenotype: Inflammatory macrophages constitute one of the largest immune cell infiltrates in CNS in MS. Proinflammatory macrophages have a distinct metabolic profile where they have reduced ATP production via OxPhos, altered TCA cycle metabolites (such as enhanced citrate and succinate levels), and have upregulated glycolysis and fatty acid synthesis pathways via mammalian target of Rapamycin (mTOR) activation. Such dysregulated mitochondrial metabolism allows these cells to be highly bactericidal by secreting inflammatory cytokines and ROS. On the other hands, immunoregulatory macrophages rely predominantly on TCA cycle and electron transport chain mediated OxPhos to generate ATP. This is aided by increased FAO via 5’ AMP-activated protein kinase (AMPK) activation. Image adapted from BiorenderTM.
Figure 6
Figure 6
Impact of exercise on immune-inflammatory response and metabolic function. Regular aerobic/endurance exercise has shown to induce a tolerogenic glucose state, which is associated with a state of immunomodulation through changes in amino acid metabolism (e.g., increased kyunrenic acid and glutamate oxidation) and nutrient sensor pathways (increased AMPK:mTOR ratio). This induces increases mitochondrial biogenesis and oxidative respiration at the mitochondria at least partly through increased fatty acid oxidation (FAO) and decreased fatty acid synthesis (FAS). This impacts on various organs and cells, including (1) higher myokine IL-6 secretion by skeletal muscle tissue; (2) Decreased proinflammatory macrophage and effector T cell number and cytotoxic activity; (3) Decreased ROS and proinflammatory cytokine production by innate immune cells, as well as an increased antioxidant response; (4) increase in Treg number and function; (5) decrease in leptin secretion (likely due to reduced fat mass) and increase in adiponectin secretion, and lower proinflammatory M1-like macrophage infiltration. Image made in BiorenderTM.

References

    1. McCoy C.E. miR-155 dysregulation and therapeutic intervention in Multiple Sclerosis. Adv. Exp. Med. Bio. 2017;1024:111–131. doi: 10.1007/978-981-10-5987-2_5.
    1. Dendrou C.A., Fugger L., Friese M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015;15:545–558. doi: 10.1038/nri3871.
    1. Thompson A.J., Baranzini S.E., Geurts J., Hemmer B., Ciccarelli O. Multiple sclerosis. Lancet. 2018;391:1622–1636. doi: 10.1016/S0140-6736(18)30481-1.
    1. White L.J., Castellano V. Exercise and brain health--implications for multiple sclerosis--Part II--immune factors and stress hormones. Sports Med. 2008;38:179–186. doi: 10.2165/00007256-200838030-00001.
    1. Benedetti B., Rocca M.R., Caputo D., Zaffaroni M., Capra R., Bertolotto A., Martinelli V., Comi G., Filippi M. In-vivo evidence for stable neuroaxonal damage in the brain of patients with benign multiple sclerosis. Mult. Scler. J. 2009;15:789–794. doi: 10.1177/1352458509103714.
    1. Levin M., Gardner L., Douglas J., Meyers L., Lee S., Shin Y. Neurodegeneration in multiple sclerosis involves multiple pathogenic mechanisms. Degener. Neurol. Neuromuscul. Dis. 2014:49. doi: 10.2147/DNND.S54391.
    1. Ljubisavljevic S., Stojanovic I., Pavlovic R., Sokolovic D., Pavlovic D., Cvetkovic T., Stevanovic I. Modulation of nitric oxide synthase by arginase and methylated arginines during the acute phase of experimental multiple sclerosis. J. Neurol. Sci. 2012;318:106–111. doi: 10.1016/j.jns.2012.03.015.
    1. Popescu B.F., Lucchinetti C.F. Pathology of demyelinating diseases. Annu. Rev. Pathol. 2012;7:185–217. doi: 10.1146/annurev-pathol-011811-132443.
    1. Carbone F., De Rosa V., Carrieri P.B., Montella S., Bruzzese D., Porcellini A., Procaccini C., La Cava A., Matarese G. Regulatory T cell proliferative potential is impaired in human autoimmune disease. Nat. Med. 2014;20:69–74. doi: 10.1038/nm.3411.
    1. University of California, San Francisco MS-EPIC Team. Cree B.A.C., Gourraud P.-A., Oksenberg J.R., Bevan C., Crabtree-Hartman E., Gelfand J.M., Goodin D.S., Graves J., Green A.J., et al. Long-term evolution of multiple sclerosis disability in the treatment era. Ann. Neurol. 2016;80:499–510. doi: 10.1002/ana.24747.
    1. Faissner S., Plemel J.R., Gold R., Yong V.W. Progressive multiple sclerosis: From pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 2019;18:905–922. doi: 10.1038/s41573-019-0035-2.
    1. Duffy C.P., McCoy C.E. The Role of MicroRNAs in Repair Processes in Multiple Sclerosis. Cells. 2020;9 doi: 10.3390/cells9071711.
    1. Nally F.K., De Santi C., McCoy C.E. Nanomodulation of Macrophages in Multiple Sclerosis. Cells. 2019;8:543. doi: 10.3390/cells8060543.
    1. Caspersen C.J., Powell K.E., Christenson G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985;100:126–131.
    1. Guo L.Y., Lozinski B., Yong V.W. Exercise in multiple sclerosis and its models: Focus on the central nervous system outcomes. J. Neurosci. Res. 2020;98:509–523. doi: 10.1002/jnr.24524.
    1. van Praag H. Exercise and the brain: Something to chew on. Trends Neurosci. 2009;32:283–290. doi: 10.1016/j.tins.2008.12.007.
    1. Pedersen B.K., Saltin B. Exercise as medicine—evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports. 2015;25(Suppl. 3):1–72. doi: 10.1111/sms.12581.
    1. Seo D.Y., Heo J.W., Ko J.R., Kwak H.B. Exercise and Neuroinflammation in Health and Disease. Int. Neurourol. J. 2019;23:S82–S92. doi: 10.5213/inj.1938214.107.
    1. Sharif K., Watad A., Bragazzi N.L., Lichtbroun M., Amital H., Shoenfeld Y. Physical activity and autoimmune diseases: Get moving and manage the disease. Autoimmun. Rev. 2018;17:53–72. doi: 10.1016/j.autrev.2017.11.010.
    1. White L.J., Dressendorfer R.H. Exercise and multiple sclerosis. Sports Med. (Auckl. N.Z.) 2004;34:1077–1100. doi: 10.2165/00007256-200434150-00005.
    1. Klaren R.E., Motl R.W., Woods J.A., Miller S.D. Effects of exercise in experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis) J. Neuroimmunol. 2014;274:14–19. doi: 10.1016/j.jneuroim.2014.06.014.
    1. Pryor W.M., Freeman K.G., Larson R.D., Edwards G.L., White L.J. Chronic exercise confers neuroprotection in experimental autoimmune encephalomyelitis. J. Neurosci. Res. 2015;93:697–706. doi: 10.1002/jnr.23528.
    1. Souza P.S., Gonçalves E.D., Pedroso G.S., Farias H.R., Junqueira S.C., Marcon R., Tuon T., Cola M., Silveira P.C.L., Santos A.R., et al. Physical Exercise Attenuates Experimental Autoimmune Encephalomyelitis by Inhibiting Peripheral Immune Response and Blood-Brain Barrier Disruption. Mol. Neurobiol. 2017;54:4723–4737. doi: 10.1007/s12035-016-0014-0.
    1. Xie Y., Li Z., Wang Y., Xue X., Ma W., Zhang Y., Wang J. Effects of moderate-versus high-intensity swimming training on inflammatory and CD4(+) T cell subset profiles in experimental autoimmune encephalomyelitis mice. J. Neuroimmunol. 2019;328:60–67. doi: 10.1016/j.jneuroim.2018.12.005.
    1. Negaresh R., Motl R.W., Mokhtarzade M., Dalgas U., Patel D., Shamsi M.M., Majdinasab N., Ranjbar R., Zimmer P., Baker J.S. Effects of exercise training on cytokines and adipokines in multiple Sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2018;24:91–100. doi: 10.1016/j.msard.2018.06.008.
    1. Simpson R.J., Kunz H., Agha N., Graff R. Exercise and the Regulation of Immune Functions. Prog. Mol. Biol. Transl. Sci. 2015;135:355–380. doi: 10.1016/bs.pmbts.2015.08.001.
    1. Fainstein N., Tyk R., Touloumi O., Lagoudaki R., Goldberg Y., Agranyoni O., Navon-Venezia S., Katz A., Grigoriadis N., Ben-Hur T., et al. Exercise intensity-dependent immunomodulatory effects on encephalomyelitis. Ann. Clin. Transl. Neurol. 2019;6:1647–1658. doi: 10.1002/acn3.50859.
    1. Kim T.-W., Sung Y.-H. Regular exercise promotes memory function and enhances hippocampal neuroplasticity in experimental autoimmune encephalomyelitis mice. Neuroscience. 2017;346:173–181. doi: 10.1016/j.neuroscience.2017.01.016.
    1. Dorans K.S., Massa J., Chitnis T., Ascherio A., Munger K.L. Physical activity and the incidence of multiple sclerosis. Neurology. 2016;87:1770. doi: 10.1212/WNL.0000000000003260.
    1. Kraszula L., Jasińska A., Eusebio M., Kuna P., Głąbiński A., Pietruczuk M. Evaluation of the relationship between leptin, resistin, adiponectin and natural regulatory T cells in relapsing-remitting multiple sclerosis. Neurol. I Neurochir. Pol. 2012;46:22–28. doi: 10.5114/ninp.2012.27211.
    1. Matarese G., Carrieri P.B., La Cava A., Perna F., Sanna V., De Rosa V., Aufiero D., Fontana S., Zappacosta S. Leptin increase in multiple sclerosis associates with reduced number of CD4(+)CD25+ regulatory T cells. Proc. Natl. Acad. Sci. USA. 2005;102:5150–5155. doi: 10.1073/pnas.0408995102.
    1. Mokhtarzade M., Ranjbar R., Majdinasab N., Patel D., Molanouri Shamsi M. Effect of aerobic interval training on serum IL-10, TNFalpha, and adipokines levels in women with multiple sclerosis: Possible relations with fatigue and quality of life. Endocrine. 2017;57:262–271. doi: 10.1007/s12020-017-1337-y.
    1. Barry A., Cronin O., Ryan A.M., Sweeney B., Yap S.M., O’Toole O., Allen A.P., Clarke G., O’Halloran K.D., Downer E.J. Impact of Exercise on Innate Immunity in Multiple Sclerosis Progression and Symptomatology. Front. Physiol. 2016;7:194. doi: 10.3389/fphys.2016.00194.
    1. Castellano V., Patel D.I., White L.J. Cytokine responses to acute and chronic exercise in multiple sclerosis. J. Appl. Physiol. (1985) 2008;104:1697–1702. doi: 10.1152/japplphysiol.00954.2007.
    1. Kjolhede T., Dalgas U., Gade A.B., Bjerre M., Stenager E., Petersen T., Vissing K. Acute and chronic cytokine responses to resistance exercise and training in people with multiple sclerosis. Scand. J. Med. Sci. Sports. 2016;26:824–834. doi: 10.1111/sms.12504.
    1. O’Neill L.A., Kishton R.J., Rathmell J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016;16:553–565. doi: 10.1038/nri.2016.70.
    1. Gaber T., Strehl C., Sawitzki B., Hoff P., Buttgereit F. Cellular energy metabolism in T-lymphocytes. Int. Rev. Immunol. 2015;34:34–49. doi: 10.3109/08830185.2014.956358.
    1. Tänzer A. Ph.D. Thesis. Humboldt-Universität zu Berlin; Berlin, Germany: 2019. Molecular Mechanisms of Immunometabolic Dysfunction in Multiple Sclerosis.
    1. Kelly B., O’Neill L.A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25:771–784. doi: 10.1038/cr.2015.68.
    1. Angajala A., Lim S., Phillips J.B., Kim J.H., Yates C., You Z., Tan M. Diverse Roles of Mitochondria in Immune Responses: Novel Insights Into Immuno-Metabolism. Front. Immunol. 2018;9:1605. doi: 10.3389/fimmu.2018.01605.
    1. Van den Bossche J., O’Neill L.A., Menon D. Macrophage Immunometabolism: Where Are We (Going)? Trends Immunol. 2017;38:395–406. doi: 10.1016/j.it.2017.03.001.
    1. Olenchock B.A., Rathmell J.C., Vander Heiden M.G. Biochemical Underpinnings of Immune Cell Metabolic Phenotypes. Immunity. 2017;46:703–713. doi: 10.1016/j.immuni.2017.04.013.
    1. Shanely R.A., Nieman D.C., Henson D.A., Jin F., Knab A.M., Sha W. Inflammation and oxidative stress are lower in physically fit and active adults. Scand. J. Med. Sci. Sports. 2013;23:215–223. doi: 10.1111/j.1600-0838.2011.01373.x.
    1. Wedell-Neergaard A.S., Lang Lehrskov L., Christensen R.H., Legaard G.E., Dorph E., Larsen M.K., Launbo N., Fagerlind S.R., Seide S.K., Nymand S., et al. Exercise-Induced Changes in Visceral Adipose Tissue Mass Are Regulated by IL-6 Signaling: A Randomized Controlled Trial. Cell Metab. 2019;29:844–855.e843. doi: 10.1016/j.cmet.2018.12.007.
    1. Lewis G.D., Farrell L., Wood M.J., Martinovic M., Arany Z., Rowe G.C., Souza A., Cheng S., McCabe E.L., Yang E., et al. Metabolic signatures of exercise in human plasma. Sci. Transl. Med. 2010;2:33ra37. doi: 10.1126/scitranslmed.3001006.
    1. Lehmann R., Zhao X., Weigert C., Simon P., Fehrenbach E., Fritsche J., Machann J., Schick F., Wang J., Hoene M., et al. Medium chain acylcarnitines dominate the metabolite pattern in humans under moderate intensity exercise and support lipid oxidation. PLoS ONE. 2010;5:e11519. doi: 10.1371/journal.pone.0011519.
    1. Simpson R.J., McFarlin B.K., McSporran C., Spielmann G., ó Hartaigh B., Guy K. Toll-like receptor expression on classic and pro-inflammatory blood monocytes after acute exercise in humans. Brain Behav. Immun. 2009;23:232–239. doi: 10.1016/j.bbi.2008.09.013.
    1. Gleeson M., McFarlin B., Flynn M. Exercise and Toll-like receptors. Exerc. Immunol. Rev. 2006;12:34–53.
    1. Timmerman K.L., Flynn M.G., Coen P.M., Markofski M.M., Pence B.D. Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: A role in the anti-inflammatory influence of exercise? J. Leukoc. Biol. 2008;84:1271–1278. doi: 10.1189/jlb.0408244.
    1. Kawanishi N., Yano H., Yokogawa Y., Suzuki K. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc. Immunol. Rev. 2010;16:105–118.
    1. Kawanishi N., Mizokami T., Yano H., Suzuki K. Exercise attenuates M1 macrophages and CD8+ T cells in the adipose tissue of obese mice. Med. Sci. Sports Exerc. 2013;45:1684–1693. doi: 10.1249/MSS.0b013e31828ff9c6.
    1. Alwarawrah Y., Kiernan K., MacIver N.J. Changes in Nutritional Status Impact Immune Cell Metabolism and Function. Front. Immunol. 2018;9:1055. doi: 10.3389/fimmu.2018.01055.
    1. Newsholme P., Curi R., Gordon S., Newsholme E.A. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem. J. 1986;239:121–125. doi: 10.1042/bj2390121.
    1. Diskin C., Palsson-McDermott E.M. Metabolic Modulation in Macrophage Effector Function. Front. Immunol. 2018;9:270. doi: 10.3389/fimmu.2018.00270.
    1. Langston P.K., Shibata M., Horng T. Metabolism Supports Macrophage Activation. Front. Immunol. 2017;8:61. doi: 10.3389/fimmu.2017.00061.
    1. Moon J.S., Hisata S., Park M.A., DeNicola G.M., Ryter S.W., Nakahira K., Choi A.M.K. mTORC1-Induced HK1-Dependent Glycolysis Regulates NLRP3 Inflammasome Activation. Cell Rep. 2015;12:102–115. doi: 10.1016/j.celrep.2015.05.046.
    1. Shi L.Z., Wang R., Huang G., Vogel P., Neale G., Green D.R., Chi H. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 2011;208:1367–1376. doi: 10.1084/jem.20110278.
    1. Jones H.H., Jones H.H., Jr., Bunch L.D. Biochemical studies in multiple sclerosis. Ann. Intern. Med. 1950;33:831–840. doi: 10.7326/0003-4819-33-4-831.
    1. Royds J.A., Timperley W.R., Taylor C.B. Levels of enolase and other enzymes in the cerebrospinal fluid as indices of pathological change. J. Neurol. Neurosurg. Psychiatry. 1981;44:1129–1135. doi: 10.1136/jnnp.44.12.1129.
    1. Nijland P.G., Molenaar R.J., van der Pol S.M.A., van der Valk P., van Noorden C.J.F., de Vries H.E., van Horssen J. Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions. Acta Neuropathol. Commun. 2015;3:79. doi: 10.1186/s40478-015-0261-8.
    1. Radu C.G., Shu C.J., Shelly S.M., Phelps M.E., Witte O.N. Positron emission tomography with computed tomography imaging of neuroinflammation in experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA. 2007;104:1937. doi: 10.1073/pnas.0610544104.
    1. Oliveira S.R., Simão A.N., Kallaur A.P., de Almeida E.R., Morimoto H.K., Lopes J., Dichi I., Kaimen-Maciel D.R., Reiche E.M. Disability in patients with multiple sclerosis: influence of insulin resistance, adiposity, and oxidative stress. Nutrition. 2014;30:268–273. doi: 10.1016/j.nut.2013.08.001.
    1. Ruiz-Argüelles A., Méndez-Huerta M.A., Lozano C.D., Ruiz-Argüelles G.J. Metabolomic profile of insulin resistance in patients with multiple sclerosis is associated to the severity of the disease. Mult. Scler. Relat. Disord. 2018;25:316–321. doi: 10.1016/j.msard.2018.08.014.
    1. Wens I., Dalgas U., Deckx N., Cools N., Eijnde B.O. Does multiple sclerosis affect glucose tolerance? Mult. Scler. 2014;20:1273–1276. doi: 10.1177/1352458513515957.
    1. Kolln J., Ren H.M., Da R.R., Zhang Y., Spillner E., Olek M., Hermanowicz N., Hilgenberg L.G., Smith M.A., van den Noort S., et al. Triosephosphate isomerase- and glyceraldehyde-3-phosphate dehydrogenase-reactive autoantibodies in the cerebrospinal fluid of patients with multiple sclerosis. J. Immunol. 2006;177:5652–5658. doi: 10.4049/jimmunol.177.8.5652.
    1. La Rocca C., Carbone F., De Rosa V., Colamatteo A., Galgani M., Perna F., Lanzillo R., Brescia Morra V., Orefice G., Cerillo I., et al. Immunometabolic profiling of T cells from patients with relapsing-remitting multiple sclerosis reveals an impairment in glycolysis and mitochondrial respiration. Metabolism. 2017;77:39–46. doi: 10.1016/j.metabol.2017.08.011.
    1. De Riccardis L., Rizzello A., Ferramosca A., Urso E., De Robertis F., Danieli A., Giudetti A.M., Trianni G., Zara V., Maffia M. Bioenergetics profile of CD4(+) T cells in relapsing remitting multiple sclerosis subjects. J. Biotechnol. 2015;202:31–39. doi: 10.1016/j.jbiotec.2015.02.015.
    1. Kaushik D.K., Bhattacharya A., Mirzaei R., Rawji K.S., Ahn Y., Rho J.M., Yong V.W. Enhanced glycolytic metabolism supports transmigration of brain-infiltrating macrophages in multiple sclerosis. J. Clin. Investig. 2019;129:3277–3292. doi: 10.1172/JCI124012.
    1. Kornberg M.D., Bhargava P., Kim P.M., Putluri V., Snowman A.M., Putluri N., Calabresi P.A., Snyder S.H. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360:449–453. doi: 10.1126/science.aan4665.
    1. Sato Y., Nagasaki M., Nakai N., Fushimi T. Physical Exercise Improves Glucose Metabolism in Lifestyle-Related Diseases. Exp. Biol. Med. 2003;228:1208–1212. doi: 10.1177/153537020322801017.
    1. Batatinha H.A.P., Biondo L.A., Lira F.S., Castell L.M., Rosa-Neto J.C. Nutrients, immune system, and exercise: Where will it take us? Nutrition. 2019;61:151–156. doi: 10.1016/j.nut.2018.09.019.
    1. Pedersen B.K., Toft A.D. Effects of exercise on lymphocytes and cytokines. Br. J. Sports Med. 2000;34:246. doi: 10.1136/bjsm.34.4.246.
    1. Wens I., Dalgas U., Vandenabeele F., Verboven K., Hansen D., Deckx N., Cools N., Eijnde B.O. High Intensity Aerobic and Resistance Exercise Can Improve Glucose Tolerance in Persons With Multiple Sclerosis: A Randomized Controlled Trial. Am. J. Phys. Med. Rehabil. 2017;96:161–166. doi: 10.1097/PHM.0000000000000563.
    1. Bogie J.F.J., Haidar M., Kooij G., Hendriks J.J.A. Fatty acid metabolism in the progression and resolution of CNS disorders. Adv. Drug Deliv. Rev. 2020 doi: 10.1016/j.addr.2020.01.004.
    1. Romano A., Koczwara J.B., Gallelli C.A., Vergara D., Micioni Di Bonaventura M.V., Gaetani S., Giudetti A.M. Fats for thoughts: An update on brain fatty acid metabolism. Int. J. Biochem. Cell Biol. 2017;84:40–45. doi: 10.1016/j.biocel.2016.12.015.
    1. Houdebine L., Gallelli C.A., Rastelli M., Sampathkumar N.K., Grenier J. Effect of physical exercise on brain and lipid metabolism in mouse models of multiple sclerosis. Chem. Phys. Lipids. 2017;207:127–134. doi: 10.1016/j.chemphyslip.2017.06.002.
    1. Duc D., Vigne S., Pot C. Oxysterols in Autoimmunity. Int. J. Mol. Sci. 2019;20:4522. doi: 10.3390/ijms20184522.
    1. Teunissen C.E., Dijkstra C.D., Polman C.H., Hoogervorst E.L., von Bergmann K., Lütjohann D. Decreased levels of the brain specific 24S-hydroxycholesterol and cholesterol precursors in serum of multiple sclerosis patients. Neurosci. Lett. 2003;347:159–162. doi: 10.1016/S0304-3940(03)00667-0.
    1. Moutinho M., Nunes M.J., Rodrigues E. Cholesterol 24-hydroxylase: Brain cholesterol metabolism and beyond. Biochim. Biophys. Acta. 2016;1861:1911–1920. doi: 10.1016/j.bbalip.2016.09.011.
    1. Novakova L., Axelsson M., Malmeström C., Zetterberg H., Björkhem I., Karrenbauer V.D., Lycke J. Reduced cerebrospinal fluid concentrations of oxysterols in response to natalizumab treatment of relapsing remitting multiple sclerosis. J. Neurol. Sci. 2015;358:201–206. doi: 10.1016/j.jns.2015.08.1537.
    1. Diestel A., Aktas O., Hackel D., Hake I., Meier S., Raine C.S., Nitsch R., Zipp F., Ullrich O. Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: A link between demyelination and neuronal damage. J. Exp. Med. 2003;198:1729–1740. doi: 10.1084/jem.20030975.
    1. Rosklint T., Ohlsson B.G., Wiklund O., Norén K., Hultén L.M. Oxysterols induce interleukin-1beta production in human macrophages. Eur. J. Clin. Investig. 2002;32:35–42. doi: 10.1046/j.1365-2362.2002.00931.x.
    1. Berod L., Friedrich C., Nandan A., Freitag J., Hagemann S., Harmrolfs K., Sandouk A., Hesse C., Castro C.N., Bähre H., et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 2014;20:1327–1333. doi: 10.1038/nm.3704.
    1. Jump D.B., Torres-Gonzalez M., Olson L.K. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation. Biochem. Pharmacol. 2011;81:649–660. doi: 10.1016/j.bcp.2010.12.014.
    1. Zidan A., Hedya S.E., Elfeky D.M., Abdin A.A. The possible anti-apoptotic and antioxidant effects of acetyl l-carnitine as an add-on therapy on a relapsing-remitting model of experimental autoimmune encephalomyelitis in rats. Biomed. Pharmacother. 2018;103:1302–1311. doi: 10.1016/j.biopha.2018.04.173.
    1. Tomassini V., Pozzilli C., Onesti E., Pasqualetti P., Marinelli F., Pisani A., Fieschi C. Comparison of the effects of acetyl L-carnitine and amantadine for the treatment of fatigue in multiple sclerosis: Results of a pilot, randomised, double-blind, crossover trial. J. Neurol. Sci. 2004;218:103–108. doi: 10.1016/j.jns.2003.11.005.
    1. Athanassakis I., Mouratidou M., Sakka P., Evangeliou A., Spilioti M., Vassiliadis S. l-carnitine modifies the humoral immune response in mice after in vitro or in vivo treatment. Int. Immunopharmacol. 2001;1:1813–1822. doi: 10.1016/S1567-5769(01)00105-9.
    1. Powell B.R., Kennaway N.G., Rhead W.J., Reece C.J., Burlingame T.G., Buist N.R. Juvenile multiple sclerosis-like episodes associated with a defect of mitochondrial beta oxidation. Neurology. 1990;40:487–491. doi: 10.1212/WNL.40.3_Part_1.487.
    1. Youssef S., Stüve O., Patarroyo J.C., Ruiz P.J., Radosevich J.L., Hur E.M., Bravo M., Mitchell D.J., Sobel R.A., Steinman L., et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002;420:78–84. doi: 10.1038/nature01158.
    1. Howie D., Ten Bokum A., Necula A.S., Cobbold S.P., Waldmann H. The Role of Lipid Metabolism in T Lymphocyte Differentiation and Survival. Front. Immunol. 2018;8:1949. doi: 10.3389/fimmu.2017.01949.
    1. Melanson E.L., MacLean P.S., Hill J.O. Exercise improves fat metabolism in muscle but does not increase 24-h fat oxidation. Exerc. Sport Sci. Rev. 2009;37:93–101. doi: 10.1097/JES.0b013e31819c2f0b.
    1. Achten J., Jeukendrup A.E. Optimizing fat oxidation through exercise and diet. Nutrition. 2004;20:716–727. doi: 10.1016/j.nut.2004.04.005.
    1. Jeukendrup A.E. Regulation of fat metabolism in skeletal muscle. Ann. New York Acad. Sci. 2002;967:217–235. doi: 10.1111/j.1749-6632.2002.tb04278.x.
    1. Garcia D., Shaw R.J. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol. Cell. 2017;66:789–800. doi: 10.1016/j.molcel.2017.05.032.
    1. O’Neill H.M., Holloway G.P., Steinberg G.R. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: Implications for obesity. Mol. Cell. Endocrinol. 2013;366:135–151. doi: 10.1016/j.mce.2012.06.019.
    1. Nieman D.C., Gillitt N.D., Sha W., Esposito D., Ramamoorthy S. Metabolic recovery from heavy exertion following banana compared to sugar beverage or water only ingestion: A randomized, crossover trial. PLoS ONE. 2018;13:e0194843. doi: 10.1371/journal.pone.0194843.
    1. Nieman D.C., Lila M.A., Gillitt N.D. Immunometabolism: A Multi-Omics Approach to Interpreting the Influence of Exercise and Diet on the Immune System. Annu. Rev. Food Sci. Technol. 2019;10:341–363. doi: 10.1146/annurev-food-032818-121316.
    1. Liepinsh E., Makarova E., Plakane L., Konrade I., Liepins K., Videja M., Sevostjanovs E., Grinberga S., Makrecka-Kuka M., Dambrova M. Low-intensity exercise stimulates bioenergetics and increases fat oxidation in mitochondria of blood mononuclear cells from sedentary adults. Physiol. Rep. 2020;8:e14489. doi: 10.14814/phy2.14489.
    1. Mähler A., Steiniger J., Bock M., Brandt A.U., Haas V., Boschmann M., Paul F. Is Metabolic Flexibility Altered in Multiple Sclerosis Patients? PLoS ONE. 2012;7:e43675. doi: 10.1371/journal.pone.0043675.
    1. Hansen D., Dendale P., van Loon L.J., Meeusen R. The impact of training modalities on the clinical benefits of exercise intervention in patients with cardiovascular disease risk or type 2 diabetes mellitus. Sports Med. (Auckl. N.Z.) 2010;40:921–940. doi: 10.2165/11535930-000000000-00000.
    1. Jorissen W., Vanmierlo T., Wens I., Somers V., Van Wijmeersch B., Bogie J.F., Remaley A.T., Eijnde B.O., Hendriks J.J.A. Twelve Weeks of Medium-Intensity Exercise Therapy Affects the Lipoprotein Profile of Multiple Sclerosis Patients. Int. J. Mol. Sci. 2018;19:193. doi: 10.3390/ijms19010193.
    1. Rambold A.S., Pearce E.L. Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function. Trends Immunol. 2018;39:6–18. doi: 10.1016/j.it.2017.08.006.
    1. Correa-da-Silva F., Pereira J.A.S., de Aguiar C.F., de Moraes-Vieira P.M.M. Mitoimmunity-when mitochondria dictates macrophage function. Cell Biol. Int. 2018;42:651–655. doi: 10.1002/cbin.10921.
    1. Lu F., Selak M., O’Connor J., Croul S., Lorenzana C., Butunoi C., Kalman B. Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J. Neurol. Sci. 2000;177:95–103. doi: 10.1016/S0022-510X(00)00343-9.
    1. Dutta R., McDonough J., Yin X., Peterson J., Chang A., Torres T., Gudz T., Macklin W.B., Lewis D.A., Fox R.J., et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann. Neurol. 2006;59:478–489. doi: 10.1002/ana.20736.
    1. Recks M.S., Stormanns E.R., Bader J., Arnhold S., Addicks K., Kuerten S. Early axonal damage and progressive myelin pathology define the kinetics of CNS histopathology in a mouse model of multiple sclerosis. Clin. Immunol. 2013;149:32–45. doi: 10.1016/j.clim.2013.06.004.
    1. Mahad D., Ziabreva I., Lassmann H., Turnbull D. Mitochondrial defects in acute multiple sclerosis lesions. Brain. 2008;131:1722–1735. doi: 10.1093/brain/awn105.
    1. Kent-Braun J.A., Ng A.V., Castro M., Weiner M.W., Gelinas D., Dudley G.A., Miller R.G. Strength, skeletal muscle composition, and enzyme activity in multiple sclerosis. J. Appl. Physiol. 1997;83:1998–2004. doi: 10.1152/jappl.1997.83.6.1998.
    1. di Penta A., Moreno B., Reix S., Fernandez-Diez B., Villanueva M., Errea O., Escala N., Vandenbroeck K., Comella J.X., Villoslada P. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS ONE. 2013;8:e54722. doi: 10.1371/journal.pone.0054722.
    1. Malkiewicz M.A., Szarmach A., Sabisz A., Cubala W.J., Szurowska E., Winklewski P.J. Blood-brain barrier permeability and physical exercise. J. Neuroinflammation. 2019;16:15. doi: 10.1186/s12974-019-1403-x.
    1. Kausar S., Wang F., Cui H. The Role of Mitochondria in Reactive Oxygen Species Generation and Its Implications for Neurodegenerative Diseases. Cells. 2018;7 doi: 10.3390/cells7120274.
    1. Ng X., Sadeghian M., Heales S., Hargreaves I.P. Assessment of Mitochondrial Dysfunction in Experimental Autoimmune Encephalomyelitis (EAE) Models of Multiple Sclerosis. Int. J. Mol. Sci. 2019;20:4975. doi: 10.3390/ijms20204975.
    1. Radak Z., Suzuki K., Higuchi M., Balogh L., Boldogh I., Koltai E. Physical exercise, reactive oxygen species and neuroprotection. Free Radic. Biol. Med. 2016;98:187–196. doi: 10.1016/j.freeradbiomed.2016.01.024.
    1. Pandit A., Vadnal J., Houston S., Freeman E., McDonough J. Impaired regulation of electron transport chain subunit genes by nuclear respiratory factor 2 in multiple sclerosis. J. Neurol. Sci. 2009;279:14–20. doi: 10.1016/j.jns.2009.01.009.
    1. Witte M.E., Nijland P.G., Drexhage J.A.R., Gerritsen W., Geerts D., van het Hof B., Reijerkerk A., de Vries H.E., van der Valk P., van Horssen J. Reduced expression of PGC-1α partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol. 2013;125:231–243. doi: 10.1007/s00401-012-1052-y.
    1. Malfroy B., Doctrow S.R., Orr P.L., Tocco G., Fedoseyeva E.V., Benichou G. Prevention and suppression of autoimmune encephalomyelitis by EUK-8, a synthetic catalytic scavenger of oxygen-reactive metabolites. Cell. Immunol. 1997;177:62–68. doi: 10.1006/cimm.1997.1091.
    1. Guy J., McGorray S., Fitzsimmons J., Beck B., Mancuso A., Rao N.A., Hamed L. Reversals of blood-brain barrier disruption by catalase: A serial magnetic resonance imaging study of experimental optic neuritis. Investig. Ophthalmol. Vis. Sci. 1994;35:3456–3465.
    1. Qi X., Hauswirth W.W., Guy J. Dual gene therapy with extracellular superoxide dismutase and catalase attenuates experimental optic neuritis. Mol. Vis. 2007;13:1–11.
    1. McGuire V.A., Ruiz-Zorrilla Diez T., Emmerich C.H., Strickson S., Ritorto M.S., Sutavani R.V., Weiβ A., Houslay K.F., Knebel A., Meakin P.J., et al. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation. Sci. Rep. 2016;6:31159. doi: 10.1038/srep31159.
    1. Boveris A., Navarro A. Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radic. Biol. Med. 2008;44:224–229. doi: 10.1016/j.freeradbiomed.2007.08.015.
    1. E L., Burns J.M., Swerdlow R.H. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol. Aging. 2014;35:2574–2583. doi: 10.1016/j.neurobiolaging.2014.05.033.
    1. Leick L., Lyngby S.S., Wojtasewski J.F.P., Pilegaard H. PGC-1α is required for training-induced prevention of age-associated decline in mitochondrial enzymes in mouse skeletal muscle. Exp. Gerontol. 2010;45:336–342. doi: 10.1016/j.exger.2010.01.011.
    1. Nakaya M., Xiao Y., Zhou X., Chang J.H., Chang M., Cheng X., Blonska M., Lin X., Sun S.C. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity. 2014;40:692–705. doi: 10.1016/j.immuni.2014.04.007.
    1. Walsh N.P., Blannin A.K., Robson P.J., Gleeson M. Glutamine, Exercise, and Immune Function. Sports Med. 1998;26:177–191. doi: 10.2165/00007256-199826030-00004.
    1. Manev H., Favaron M., Guidotti A., Costa E. Delayed increase of Ca2+ influx elicited by glutamate: Role in neuronal death. Mol. Pharmacol. 1989;36:106–112.
    1. Smaili S.S., Ureshino R.P., Rodrigues L., Rocha K.K., Carvalho J.T., Oseki K.T., Bincoletto C., Lopes G.S., Hirata H. The role of mitochondrial function in glutamate-dependent metabolism in neuronal cells. Curr. Pharm. Des. 2011;17:3865–3877. doi: 10.2174/138161211798357782.
    1. Tisell A., Leinhard O.D., Warntjes J.B., Aalto A., Smedby Ö., Landtblom A.M., Lundberg P. Increased concentrations of glutamate and glutamine in normal-appearing white matter of patients with multiple sclerosis and normal MR imaging brain scans. PLoS ONE. 2013;8:e61817. doi: 10.1371/journal.pone.0061817.
    1. Macrez R., Stys P.K., Vivien D., Lipton S.A., Docagne F. Mechanisms of glutamate toxicity in multiple sclerosis: Biomarker and therapeutic opportunities. Lancet Neurol. 2016;15:1089–1102. doi: 10.1016/S1474-4422(16)30165-X.
    1. Pitt D., Werner P., Raine C.S. Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med. 2000;6:67–70. doi: 10.1038/71555.
    1. Thurtell M.J., Joshi A.C., Leone A.C., Tomsak R.L., Kosmorsky G.S., Stahl J.S., Leigh R.J. Crossover trial of gabapentin and memantine as treatment for acquired nystagmus. Ann. Neurol. 2010;67:676–680. doi: 10.1002/ana.21991.
    1. Metzler B., Gfeller P., Guinet E. Restricting Glutamine or Glutamine-Dependent Purine and Pyrimidine Syntheses Promotes Human T Cells with High FOXP3 Expression and Regulatory Properties. J. Immunol. 2016;196:3618. doi: 10.4049/jimmunol.1501756.
    1. Castell L. Glutamine supplementation in vitro and in vivo, in exercise and in immunodepression. Sports Med. 2003;33:323–345. doi: 10.2165/00007256-200333050-00001.
    1. Agostini F., Biolo G. Effect of physical activity on glutamine metabolism. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:58–64. doi: 10.1097/MCO.0b013e328332f946.
    1. Walsh N.P., Blannin A.K., Clark A.M., Cook L., Robson P.J., Gleeson M. The effects of high-intensity intermittent exercise on the plasma concentrations of glutamine and organic acids. Eur. J. Appl. Physiol. Occup. Physiol. 1998;77:434–438. doi: 10.1007/s004210050356.
    1. Kane D.A. Lactate oxidation at the mitochondria: a lactate-malate-aspartate shuttle at work. Front. Neurosci. 2014;8:366. doi: 10.3389/fnins.2014.00366.
    1. Herbst E.A., Holloway G.P. Exercise increases mitochondrial glutamate oxidation in the mouse cerebral cortex. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Et Metab. 2016;41:799–801. doi: 10.1139/apnm-2016-0033.
    1. Morita M., Gravel S.-P., Hulea L., Larsson O., Pollak M., St-Pierre J., Topisirovic I. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle. 2015;14:473–480. doi: 10.4161/15384101.2014.991572.
    1. Wang X., Li M., Gao Y., Gao J., Yang W., Liang H., Ji Q., Li Y., Liu H., Huang J. Rheb1-mTORC1 maintains macrophage differentiation and phagocytosis in mice. Exp. Cell Res. 2016;344:219–228. doi: 10.1016/j.yexcr.2016.04.017.
    1. Svensson M., Lexell J., Deierborg T. Effects of Physical Exercise on Neuroinflammation, Neuroplasticity, Neurodegeneration, and Behavior: What We Can Learn From Animal Models in Clinical Settings. Neurorehabil. Neural Repair. 2015;29:577–589. doi: 10.1177/1545968314562108.
    1. Jang B.-C., Paik J.-H., Kim S.-P., Shin D.-H., Song D.-K., Park J.-G., Suh M.-H., Park J.-W., Suh S.-I. Catalase induced expression of inflammatory mediators via activation of NF-κB, PI3K/AKT, p70S6K, and JNKs in BV2 microglia. Cell. Signal. 2005;17:625–633. doi: 10.1016/j.cellsig.2004.10.001.
    1. Heidt S., Roelen D.L., Eijsink C., van Kooten C., Claas F.H., Mulder A. Effects of immunosuppressive drugs on purified human B cells: Evidence supporting the use of MMF and rapamycin. Transplantation. 2008;86:1292–1300. doi: 10.1097/TP.0b013e3181874a36.
    1. Russo C.D., Navarra P., Lisi L. Chapter 20—mTOR in Multiple Sclerosis: The Emerging Role in the Regulation of Glial Biology. In: Maiese K., editor. Molecules to Medicine with mTOR. Academic Press; Boston, MA, USA: 2016. pp. 331–343.
    1. Weichhart T., Säemann M.D. The multiple facets of mTOR in immunity. Trends Immunol. 2009;30:218–226. doi: 10.1016/j.it.2009.02.002.
    1. Delgoffe G.M., Pollizzi K.N., Waickman A.T., Heikamp E., Meyers D.J., Horton M.R., Xiao B., Worley P.F., Powell J.D. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 2011;12:295–303. doi: 10.1038/ni.2005.
    1. Donia M., Mangano K., Amoroso A., Mazzarino M.C., Imbesi R., Castrogiovanni P., Coco M., Meroni P., Nicoletti F. Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitis in Dark Agouti rats and induces expansion of peripheral CD4+CD25+Foxp3+ regulatory T cells. J. Autoimmun. 2009;33:135–140. doi: 10.1016/j.jaut.2009.06.003.
    1. Jones R.G., Pearce E.J. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells. Immunity. 2017;46:730–742. doi: 10.1016/j.immuni.2017.04.028.
    1. Chaube B., Bhat M.K. AMPK, a key regulator of metabolic/energy homeostasis and mitochondrial biogenesis in cancer cells. Cell Death Dis. 2016;7:e2044. doi: 10.1038/cddis.2015.404.
    1. Nath N., Khan M., Rattan R., Mangalam A., Makkar R.S., Meester C.d., Bertrand L., Singh I., Chen Y., Viollet B., et al. Loss of AMPK exacerbates experimental autoimmune encephalomyelitis disease severity. Biochem. Biophys. Res. Commun. 2009;386:16–20. doi: 10.1016/j.bbrc.2009.05.106.
    1. Fan W., Evans R. PPARs and ERRs: Molecular mediators of mitochondrial metabolism. Curr. Opin. Cell Biol. 2015;33:49–54. doi: 10.1016/j.ceb.2014.11.002.
    1. Fan W., Waizenegger W., Lin C.S., Sorrentino V., He M.-X., Wall C.E., Li H., Liddle C., Yu R.T., Atkins A.R., et al. PPARδ Promotes Running Endurance by Preserving Glucose. Cell Metab. 2017;25:1186–1193.e1184. doi: 10.1016/j.cmet.2017.04.006.
    1. Agostini D., Natalucci V., Baldelli G., De Santi M., Donati Zeppa S., Vallorani L., Annibalini G., Lucertini F., Federici A., Izzo R., et al. New Insights into the Role of Exercise in Inhibiting mTOR Signaling in Triple-Negative Breast Cancer. Oxid Med. Cell Longev. 2018;2018:5896786. doi: 10.1155/2018/5896786.
    1. Hoeffer C.A., Klann E. mTOR signaling: At the crossroads of plasticity, memory and disease. Trends Neurosci. 2010;33:67–75. doi: 10.1016/j.tins.2009.11.003.
    1. Freitag J., Berod L., Kamradt T., Sparwasser T. Immunometabolism and autoimmunity. Immunol. Cell Biol. 2016;94:925–934. doi: 10.1038/icb.2016.77.
    1. De Gasperis-Brigante C.D., Parker J.L., O’Connor P.W., Bruno T.R. Reducing clinical trial risk in multiple sclerosis. Mult. Scler. Relat. Disord. 2016;5:81–88. doi: 10.1016/j.msard.2015.11.007.
    1. Cervenka I., Agudelo L.Z., Ruas J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357 doi: 10.1126/science.aaf9794.
    1. Hassanain H.H., Chon S.Y., Gupta S.L. Differential regulation of human indoleamine 2,3-dioxygenase gene expression by interferons-gamma and -alpha. Analysis of the regulatory region of the gene and identification of an interferon-gamma-inducible DNA-binding factor. J. Biol. Chem. 1993;268:5077–5084.
    1. Schröcksnadel K., Wirleitner B., Winkler C., Fuchs D. Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta. 2006;364:82–90. doi: 10.1016/j.cca.2005.06.013.
    1. Frumento G., Rotondo R., Tonetti M., Damonte G., Benatti U., Ferrara G.B. Tryptophan-derived Catabolites Are Responsible for Inhibition of T and Natural Killer Cell Proliferation Induced by Indoleamine 2,3-Dioxygenase. J. Exp. Med. 2002;196:459–468. doi: 10.1084/jem.20020121.
    1. Fallarino F., Grohmann U., Vacca C., Bianchi R., Orabona C., Spreca A., Fioretti M.C., Puccetti P. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9:1069–1077. doi: 10.1038/sj.cdd.4401073.
    1. Orabona C., Puccetti P., Vacca C., Bicciato S., Luchini A., Fallarino F., Bianchi R., Velardi E., Perruccio K., Velardi A., et al. Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood. 2006;107:2846–2854. doi: 10.1182/blood-2005-10-4077.
    1. Yan Y., Zhang G.-X., Gran B., Fallarino F., Yu S., Li H., Cullimore M.L., Rostami A., Xu H. IDO Upregulates Regulatory T Cells via Tryptophan Catabolite and Suppresses Encephalitogenic T Cell Responses in Experimental Autoimmune Encephalomyelitis. J. Immunol. 2010;185:5953. doi: 10.4049/jimmunol.1001628.
    1. Xiao B.G., Liu X., Link H. Antigen-specific T cell functions are suppressed over the estrogen-dendritic cell-indoleamine 2,3-dioxygenase axis. Steroids. 2004;69:653–659. doi: 10.1016/j.steroids.2004.05.019.
    1. Negrotto L., Correale J. Amino Acid Catabolism in Multiple Sclerosis Affects Immune Homeostasis. J. Immunol. 2017;198:1900–1909. doi: 10.4049/jimmunol.1601139.
    1. Wang J., Simonavicius N., Wu X., Swaminath G., Reagan J., Tian H., Ling L. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 2006;281:22021–22028. doi: 10.1074/jbc.M603503200.
    1. Amirkhani A., Rajda C., Arvidsson B., Bencsik K., Boda K., Seres E., Markides K.E., Vécsei L., Bergquist J. Interferon-β affects the tryptophan metabolism in multiple sclerosis patients. Eur. J. Neurol. 2005;12:625–631. doi: 10.1111/j.1468-1331.2005.01041.x.
    1. Rajda C., Galla Z., Polyák H., Maróti Z., Babarczy K., Pukoli D., Vécsei L. Cerebrospinal Fluid Neurofilament Light Chain Is Associated with Kynurenine Pathway Metabolite Changes in Multiple Sclerosis. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21082665.
    1. Bansi J., Koliamitra C., Bloch W., Joisten N., Schenk A., Watson M., Kool J., Langdon D., Dalgas U., Kesselring J. Persons with secondary progressive and relapsing remitting multiple sclerosis reveal different responses of tryptophan metabolism to acute endurance exercise and training. J. Neuroimmunol. 2018;314:101–105. doi: 10.1016/j.jneuroim.2017.12.001.
    1. Gaetani L., Boscaro F., Pieraccini G., Calabresi P., Romani L., Di Filippo M., Zelante T. Host and Microbial Tryptophan Metabolic Profiling in Multiple Sclerosis. Front. Immunol. 2020;11 doi: 10.3389/fimmu.2020.00157.
    1. Herman S., Åkerfeldt T., Spjuth O., Burman J., Kultima K. Biochemical Differences in Cerebrospinal Fluid between Secondary Progressive and Relapsing⁻Remitting Multiple Sclerosis. Cells. 2019;8 doi: 10.3390/cells8020084.
    1. Strasser B., Geiger D., Schauer M., Gatterer H., Burtscher M., Fuchs D. Effects of Exhaustive Aerobic Exercise on Tryptophan-Kynurenine Metabolism in Trained Athletes. PLoS ONE. 2016;11:e0153617. doi: 10.1371/journal.pone.0153617.
    1. Schlittler M., Goiny M., Agudelo L.Z., Venckunas T., Brazaitis M., Skurvydas A., Kamandulis S., Ruas J.L., Erhardt S., Westerblad H., et al. Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans. Am. J. Physiol. Cell Physiol. 2016;310:C836–C840. doi: 10.1152/ajpcell.00053.2016.
    1. Agudelo L.Z., Ferreira D.M.S., Cervenka I., Bryzgalova G., Dadvar S., Jannig P.R., Pettersson-Klein A.T., Lakshmikanth T., Sustarsic E.G., Porsmyr-Palmertz M., et al. Kynurenic Acid and Gpr35 Regulate Adipose Tissue Energy Homeostasis and Inflammation. Cell Metab. 2018;27:378–392.e375. doi: 10.1016/j.cmet.2018.01.004.
    1. Agudelo L.Z., Femenía T., Orhan F., Porsmyr-Palmertz M., Goiny M., Martinez-Redondo V., Correia J.C., Izadi M., Bhat M., Schuppe-Koistinen I., et al. Skeletal Muscle PGC-1α1 Modulates Kynurenine Metabolism and Mediates Resilience to Stress-Induced Depression. Cell. 2014;159:33–45. doi: 10.1016/j.cell.2014.07.051.
    1. Beckerman H., de Groot V., Scholten M.A., Kempen J.C.E., Lankhorst G.J. Physical Activity Behavior of People with Multiple Sclerosis: Understanding How They Can Become More Physically Active. Phys. Ther. 2010;90:1001–1013. doi: 10.2522/ptj.20090345.
    1. Ryan J.M., Stennett A.M., Peacock S., Baker G., Norris M. Associations between activity and participation in adults with multiple sclerosis: A cross sectional study. Physiotherapy. 2019;105:453–460. doi: 10.1016/j.physio.2018.11.002.
    1. Karpatkin H.I. Multiple Sclerosis and Exercise: A Review of the Evidence. Int. J. Ms. Care. 2005;7:36–41. doi: 10.7224/1537-2073-7.2.36.

Source: PubMed

3
구독하다