Interactive effects of neonatal exposure to monosodium glutamate and aspartame on glucose homeostasis

Kate S Collison, Nadine J Makhoul, Marya Z Zaidi, Rana Al-Rabiah, Angela Inglis, Bernard L Andres, Rosario Ubungen, Mohammed Shoukri, Futwan A Al-Mohanna, Kate S Collison, Nadine J Makhoul, Marya Z Zaidi, Rana Al-Rabiah, Angela Inglis, Bernard L Andres, Rosario Ubungen, Mohammed Shoukri, Futwan A Al-Mohanna

Abstract

Background: Recent evidence suggests that the effects of certain food additives may be synergistic or additive. Aspartame (ASP) and Monosodium Glutamate (MSG) are ubiquitous food additives with a common moiety: both contain acidic amino acids which can act as neurotransmitters, interacting with NMDA receptors concentrated in areas of the Central Nervous System regulating energy expenditure and conservation. MSG has been shown to promote a neuroendocrine dysfunction when large quantities are administered to mammals during the neonatal period. ASP is a low-calorie dipeptide sweetener found in a wide variety of diet beverages and foods. However, recent reports suggest that ASP may promote weight gain and hyperglycemia in a zebrafish nutritional model.

Methods: We investigated the effects of ASP, MSG or a combination of both on glucose and insulin homeostasis, weight change and adiposity, in C57BL/6 J mice chronically exposed to these food additives commencing in-utero, compared to an additive-free diet. Pearson correlation analysis was used to investigate the associations between body characteristics and variables in glucose and insulin homeostasis.

Results: ASP alone (50 mg/Kgbw/day) caused an increase in fasting blood glucose of 1.6-fold, together with reduced insulin sensitivity during an Insulin Tolerance Test (ITT) P < 0.05. Conversely MSG alone decreased blood triglyceride and total cholesterol (T-CHOL) levels. The combination of MSG (120 mg/Kgbw/day) and ASP elevated body weight, and caused a further increase in fasting blood glucose of 2.3-fold compared to Controls (prediabetic levels); together with evidence of insulin resistance during the ITT (P < 0.05). T-CHOL levels were reduced in both ASP-containing diets in both genders. Further analysis showed a strong correlation between body weight at 6 weeks, and body weight and fasting blood glucose levels at 17 weeks, suggesting that early body weight may be a predictor of glucose homeostasis in later life.

Conclusions: Aspartame exposure may promote hyperglycemia and insulin intolerance. MSG may interact with aspartame to further impair glucose homeostasis. This is the first study to ascertain the hyperglycemic effects of chronic exposure to a combination of these commonly consumed food additives; however these observations are limited to a C57BL/6 J mouse model. Caution should be applied in extrapolating these findings to other species.

Figures

Figure 1
Figure 1
Food (A,B) and fluid (C,D) intake in mice at 7 (A,C) and 15 weeks of age (B,D), according to diet groups (n = 18). Statistically significant differences are shown using different letters a,b. Significant gender-wise differences are denoted by * P < .05.
Figure 2
Figure 2
Effect of aspartame (ASP) and MSG on fasting glucose levels in C57Bl/6 J mice. Statistically significant differences are shown using different letters abc (n = 18 per diet and per gender).
Figure 3
Figure 3
Random-fed insulin tolerance test. Glucose levels following insulin challenge in (A) male mice and (B) female mice at 0,15,30,45 and 60 minutes after challenge. Dissimilar means are denoted by **,*** indicating p-values of < .01 and < .001. Area Under the Curve (AUC GLUCOSE) as a measure of insulin resistance in (C) males and (D) females. Statistically significant differences are shown using different letters abc.

References

    1. Humphries P, Pretorius E, Naude H. Direct and indirect cellular effects of aspartame on the brain. Eur J Clin Nutr. 2008;62:451–462. doi: 10.1038/sj.ejcn.1602866.
    1. Kim JY, Seo J, Cho KH. Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin-fed zebrafish have elevation of cholesterol ester transfer protein activity in hypercholesterolemia. Food Chem Toxicol. 2011;49(11):2899–2905. doi: 10.1016/j.fct.2011.08.001.
    1. Christian B, McConnaughey K, Bethea E, Brantley S, Coffey A, Hammond L, Harrell S, Metcalf K, Muelenbein D, Spruill W, Brinson L, McConnaughey M. Chronic aspartame affects T-maze performance, brain cholinergic receptors and Na+, K + −ATPase in rats. Pharmacol Biochem Behav. 2004;78(1):121–127. doi: 10.1016/j.pbb.2004.02.017.
    1. Quiron R, Boksa P. Autoradiographic distribution of muscarinic [3 H]acetylcholine receptors in rat brain: comparison with antagonists. Eur J Pharmacol. 1986;123:170–172. doi: 10.1016/0014-2999(86)90702-8.
    1. Iguchi A, Gotoh M, Matsunaga H, Yatomi A, Honmura A, Yanase M, Sakamoto N. Mechanism of central hyperglycemic effect of cholinergic agonists in fasted rats. Am J Physiol. 1986;254, 251(4 Pt 1):E431–E437.
    1. Nuttall FQ, Schweim KJ, Gannon MC. Effect of orally administered phenylalaninewith and without glucose on insulin, glucagon and glucose concentrations. Horm Metab Res. 2006;38(8):518–523. doi: 10.1055/s-2006-949523.
    1. Fowler SP, Williams K, Resendez RG, Hunt KJ, Hazuda HP, Stern M. Fueling the obesity epidemic? Artificially sweetened beverage use and long-term weight gain. Obesity (Silver Spring) 2008;16(8):1894–1900. doi: 10.1038/oby.2008.284.
    1. Stellman SD, Garfinkel L. Patterns of artificial sweetener use and weight change in an American Cancer Society prospective study. Appetite. 1988;11(Suppl 1):85–91.
    1. Fowler SP, Williams K, Hazuda HP. Diet soft drinks consumption is associated with Increased Waist circumference in the San Antonio Longitudinal Study of Aging. [Abstract] American Diabetes Association 71st Scientific Sessions. 2011. p. 0788-P.
    1. De la Hunty A, Gibson S, Ashwell M. A review of the effectiveness of aspartame in helping with weight control. Br Nutr Found Nutr Bull. 2006;31:115–128.
    1. Scalett AC, Onney JW. Components of hypothalamic obesity: bipiperidyl-mustard lesions add hyperphagia to monosodium glutamate-induced hyperinsulinemia. Brain Res. 1986;374(2):380–384. doi: 10.1016/0006-8993(86)90434-8.
    1. Nemeroff CB, Lipton MA, Kizer JS. Models of neuroendocrine regulation: use of monosodium glutamate as an investigational tool. Dev Neurosci. 1978;1(2):102–109. doi: 10.1159/000112561.
    1. Macho L, Ficková M, Jezová ZS. Late effects of postnatal administration of monosodium glutamate on insulin action in adultrats. Physiol Res. 2000;49(Suppl. 1):S79–S85.
    1. Magariños AM, Estivariz F, Morado MI, De Nicola AF. Regulation of the central nervous system-pituitary-adrenal axis in rats after neonatal treatment with monosodium glutamate. Neuroendocrinology. 1988;48(2):105–111. doi: 10.1159/000124997.
    1. Fernandez-Tresguerres Hernández JA. Effect of monosodium glutamate given orally on appetite control (a new theory for the obesity epidemic) Ann R Acad Nac Med (Madr) 2005;122(2):341–355.
    1. Hermanussen M, García AP, Sunder M, Voigt M, Salazar V, Tresguerres JA. Obesity, voracity, and short stature: the impact of glutamate on the regulation of appetite. Eur J Clin Nut. 2006;60(1):25–31. doi: 10.1038/sj.ejcn.1602263.
    1. von Diemen V, Trindade MRM. Effect of oral administration of monosodium glutamate during pregnancy and breast-feeding in the offspring of pregnant Wistar rats. Acta Cirurg Brasil. 2006;25(1):37–42.
    1. Yu T, Zhao Y, Shi W, Ma R, Yu L. Effects of maternal oral administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain. Brain Res. 1997;747(2):195–206. doi: 10.1016/S0006-8993(96)01181-X.
    1. Fourteenth Report of the Joint FAO/WHO Expert Committee on Food Additives, FAO Nutrition Meetings Report Series No. 48, WHO Technical Report Series, No. 462. 1971. p. 15.
    1. Thirty-first Report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series, No. 759. 1987. pp. 29–31.
    1. U.S. Department of Health and Human Services. Generally Recognized as safe. .
    1. Position of the American Dietetic Association. Use of nutritive and nonnutritive sweeteners. J Am Diet Assoc. 2004;104(2):255–275. Erratum in: J Am Diet Assoc. 2004 Jun;104(6):1013.
    1. Sahu A. Minireview. A hypothalamic role in energy balance with special emphasis on leptin. Endocrinology. 2004;145(6):2613–2620. doi: 10.1210/en.2004-0032.
    1. Lam CK, Chari M, Rutter GA, Lam TK. Hypothalamic nutrient sensing activates a forebrain-hindbrain neuronal circuit to regulate glucose production in vivo. Diabetes. 2011;60(1):107–113. doi: 10.2337/db10-0994.
    1. Molina PE, Tepper PG, Yousef KA, Abumrad NN, Lang CH. Central NMDA enhances hepatic glucose output and noninsulin-mediated glucose uptake by a non-adrenergic mechanism. Brain Res. 1994;634:41–48. doi: 10.1016/0006-8993(94)90256-9.
    1. Molina PE, Abumrad NN. Contribution of excitatory amino acids to hypoglycemic counter-regulation. Brain Res. 2001;899(1–2):201–208.
    1. Zorad S, Jezova D, Szabova L, Macho L, Tybitanclova K. Low number of insulin receptors but high receptor protein content in adipose tissue of rats with monosodium glutamate-induced obesity. Gen Physiol Biophys. 2003;22(4):557–560.
    1. Yamazaki RK, Brito GA, Coelho I, Pequitto DC, Yamaguchi AA, Borghetti G, Schiessel DL, Kryczyk M, Machado J, Rocha RE, Aikawa J, Iagher F, Naliwaiko K, Tanhoffer RA, Nunes EA, Fernandes LC. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats. Lipids Health Dis. 2011;28:10–66.
    1. Scollan-Koliopoulos M, David B. The evaluation and management of childhood type 2 diabetes mellitus. Prim Care Diabetes. 2011;5(3):151–158. doi: 10.1016/j.pcd.2011.04.002.
    1. Rodbard HW. Diabetes screening, diagnosis, and therapy in pediatric patients with type 2 diabetes. Medscape J Med. 2008;10(8):184–192.
    1. Lau K, McLean WG, Williams DP, Howard CV. Synergistic interactions between commonly used food additives in a developmental neurotoxicity test. Toxicol Sci. 2006;90(1):178–187.
    1. Jackson AA, Burdge GC, Lillicrop KA. Diet, nutrition and modulation of genomic expression in fetal origins of adult disease. J Nutrigenet Nutrigenomics. 2010;3(4–6):192–208.
    1. Grove KL, Grayson BE, Glavas MM, Xiao XQ, Smith MS. Development of metabolic systems. Physiol Behav. 2005;86:646–660. doi: 10.1016/j.physbeh.2005.08.063.
    1. Collison KS, Makhoul NJ, Inglis A, Al-Johi M, Zaidi MZ, Maqbool Z, Saleh SM, Bakheet R, Mondreal R, Al-Rabiah R, Shoukri M, Milgram NW, Al-Mohanna FA. Dietary trans-fat combined with monosodium glutamate induces dyslipidemia and impairs spatial memory. Physiol Behav. 2010;99(3):334–342. doi: 10.1016/j.physbeh.2009.11.010.
    1. Collison KS, Maqbool Z, Saleh SM, Inglis A, Makhoul NJ, Bakheet R, Al-Johi M, Al-Rabiah R, Zaidi MZ, Al-Mohanna FA. Effect of dietary monosodium glutamate on trans fat-induced nonalcoholic fatty liver disease. J Lipid Res. 2009;50(8):1521–1537. doi: 10.1194/jlr.M800418-JLR200.
    1. Tschanz C, Butchko HH, Stargel WW, Kotsonis FN, editor. The Clinical Evaluation of a Food Additive: Assessment of Aspartame. CRC Press, Boca Raton; 1996.
    1. Kaneko JJ, Harvey JW, Bruss ML. Clinical Biochemistry of domestic animal. Academic Press, New York; 1997. pp. 890–894.
    1. Hicks CR, Turner KV. Fundamental Concepts in the Design of Experiments. Oxford University Press, New York; 1999.
    1. Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic Research. Van Nostrand Reinhold, New York; 1982.
    1. Shigeta H, Yoshida T, Nakai M, Mori H, Kano Y, Nishioka H, Kajiyama S, Kitagawa Y, Kanatsuna T, Kondo M. Effects of aspartame on diabetic rats and diabetic patients. J Nutr Sci Vitaminol (Tokyo) 1985;31(5):533–540. doi: 10.3177/jnsv.31.533.
    1. Dow-Edwards DL, Scribani LA, Riley EP. Impaired performance on odor-aversion testing following prenatal aspartame exposure in the guinea pig. Neurotoxicol Teratol. 1989;11(4):413–416. doi: 10.1016/0892-0362(89)90015-9.
    1. Park CH, Choi SH, Piao Y, Kim S, Lee YJ, Kim HS, Jeong SJ, Rah JC, Seo JH, Lee JH, Chang K, Jung YJ, Suh YH. Glutamate and aspartate impair memory retention and damage hypothalamic neurons in adult mice. Toxicol Lett. 2000;115(2):117–125. doi: 10.1016/S0378-4274(00)00188-0.
    1. Frieder B, Grimm VE. Prenatal monosodium glutamate (MSG) treatment given through the mother's diet causes behavioral deficits in rat offspring. Int J Neurosci. 1984;23(2):117–126. doi: 10.3109/00207458408985353.
    1. Gao J, Wu J, Zhao XN, Zhang WN, Yhang YY, Zhang ZX. Transplacental neurotoxic effects of monosodium glutamate on structures and functions of specific brain areas of filial mice. Sheng Li Xue Bao. 1994;46(1):44–51.
    1. van der Heide LP, Ramakers GM, Smidt MP. Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol. 2006;79(4):205–221. doi: 10.1016/j.pneurobio.2006.06.003.
    1. Stegink LD, Filer LJ, Baker GL. Plasma glutamate concentrations in adult subjects ingesting monosodium L-glutamate in consommé. Am J Clin Nutr. 1985;42:220–225.
    1. Stegink LD, Filer LJ, Baker GL. Plasma amino acid concentrations in normal adults ingesting aspartame and monosodium L-glutamate as part of a soup/beverage meal. Metabolism. 1987;36(11):1073–1079. doi: 10.1016/0026-0495(87)90028-X.
    1. Olney JW, Labruyere J, de Gubareff T. Brain damage in mice from voluntary ingestion of glutamate and aspartate. Neurobehav Toxicol. 1980;2(2):125–129.
    1. Yokogoshi H, Roberts CH, Caballero B, Wurtman RJ. Effects of aspartame and glucose administration on brain and plasma levels of large neutral amino acids and brain 5-hydroxyindoles. Am J Clin Nutr. 1984;40(1):1–7.
    1. Abdel-Salam OM, Salem NA, Hussein JS. Effects of aspartame on oxidative stress and monoamine neurotransmitter levels in lipopolysaccharide-treated mice. Neurotox Res. 2012;21(3):245–255. doi: 10.1007/s12640-011-9264-9.
    1. Burri R, Matthieu JM, Vandevelde M, Lazeyras F, Posse S, Herschkowitz N. Brain damage and recovery in hyperphenylalaninemic rats. Dev Neurosci. 1990;12(2):116–125. doi: 10.1159/000111840.
    1. Reynolds R, Burri R, Mahal S, Herschkowitz N. Disturbed myelinogenesis and recovery in hyperphenylalaninemia in rats: an immunohistochemical study. Exp Neurol. 1992;115(3):347–367. doi: 10.1016/0014-4886(92)90200-A.
    1. Piccardo MG, Rosa M, Russo L. The effects of a load of phenĭlalanine on glucose metabolism. Boll Soc Ital Biol Sper. 1983;59(2):167–170.
    1. Takahashi A, Kishi E, Ishimaru H, Ikarashi Y, Maruyama Y. Stimulation of rat hypothalamus by microdialysis with K+: increase of ACh release elevates plasma glucose. Am J Physiol. 1998;275(5 Pt 2):R1647–R1653.
    1. De Souza CT, Pereira-da-Silva M, Araujo EP, Morari J, Alvarez-Rojas F, Bordin S, Moreira-Filho DC, Carvalheira JB, Saad MJ, Velloso LA. Distinct subsets of hypothalamic genes are modulated by two different thermogenesis-inducing stimuli. Obesity (Silver Spring) 2008;16(6):1239–1247. doi: 10.1038/oby.2008.53.
    1. Olney JW. In: Glutamic acid: Advances in Biochemistry and Physiology. Filer LJ Jr, Garattini S, Kare MR, Reynolds AW, Wurtman RJ, editor. Raven Press, New York; 1979. Excitotoxic amino acids: research applications and safety implications; pp. 287–331.
    1. Holzwarth-McBride MA, Hurst EM, Knigge KM. Monosodium glutamate induced lesions of the arcuate nucleus. I. Endocrine deficiency and ultrastructure of the median eminence. Anat Rec. 1976;186(2):185–205. doi: 10.1002/ar.1091860205.
    1. Goldsmith PC. Neurological responses to elevated glutamate in the medial basal hypothalamus of the infant mouse. J Nutr. 2000;130(4S Suppl):1032S–1038S.
    1. Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP, Fadel J. Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci. 2007;25(10):3109–3114. doi: 10.1111/j.1460-9568.2007.05560.x.
    1. Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW. The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci. 2002;22:9134–9141.
    1. Baker DA, McFarland K, Lake RW, Shen H, Tang XC, Toda S, Kalivas PW. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci. 2003;6:743–749. doi: 10.1038/nn1069.
    1. Moran MM, Melendez R, Baker D, Kalivas PW, Seamans JK. Cystine/glutamate antiporter regulation of vesicular glutamate release. Ann NY Acad Sci. 2003;2003(1003):445–447.
    1. Stegink LD, Pitkin RM, Reynolds WA, Brummel MC, Filer LJ. Placental transfer of aspartate and its metabolites in the primate. Metabolism. 1979;28(6):669–676. doi: 10.1016/0026-0495(79)90021-0.
    1. Pueschel SM, Boylan JM, Jackson BT, Piasecki GJ. A study of placental transfer mechanisms in nonhuman primates using [14C]phenylalanine. Obstet Gynecol. 1982;59(2):182–188.
    1. Stegink LD, Filer LJ, Baker GL, McDonnell JE. Letters to the Editor: Aspartame doses for Phenylketonuria. J Nutr. 1981;111(9):1688–1690.
    1. Levy HL. Phenylketonuria: old disease, new approach to treatment [editorial] Proc Natl Acad Sci USA. 1999;96:1811–1813. doi: 10.1073/pnas.96.5.1811.
    1. Scriver CR, Kaufman S, Eisensmith RC, Woo SLC. In: The metabolic and molecular bases of inherited disease. Scriver CR, Beaudet AL, Sly WS, Valle D, editor. McGraw-Hill, New York; 1995. The hyperphenylalaninemias; pp. 1015–1075.
    1. Gazit V, Ben-Shlomo I, Ben-Shachar D, Karnieli E, Katz Y. Phenylpyruvate-induced hypoglycemia: Relevance to the pathogenesis of brain damage in phenylketonuria. Neurosci Lett. 1998;51(Suppl):S5.
    1. Gazit V, Ben-Abraham R, Rudin M, Katz Y. Glucose-lowering effect of beta-phenylpyruvate in neonatal mice: a possible mechanism for phenylketonuria-related neurodegenerative changes. Brain Res Dev Brain Res. 2003;141(1–2):137–140.
    1. Tourian A, Treiman DM, Carr JS. Developmental biology of hepatic phenylalanine hydroxylase activity in foetal and neonatal rats synchronized as to conception. Biochem Biophys Acta. 1972;279(3):484–490. doi: 10.1016/0304-4165(72)90170-5.
    1. Dhondt JL, Dautrevaux M, Biserte G, Farriaux JP. Developmental aspect of phenylalanine hydroxylase in the rat – hormonal influences. Mech Ageing Dev. 1979;10(3–4):219–224.
    1. Yeoh GC, Edkins E, Mackenzie K, Fuller S, Mercer JF, Dahl HH. The development of phenylalanine hydroxylase in rat liver; in vivo, and in vitro studies utilizing fetal hepatocyte cultures. Differentiation. 1988;38(1):42–48. doi: 10.1111/j.1432-0436.1988.tb00590.x.
    1. Miller AL, Hawkins RA, Veech RL. Phenylketonuria: phenylalanine inhibits brain pyruvate kinase in vivo. Science. 1973;179(76):904–906. doi: 10.1126/science.179.4076.904.
    1. Shah SN, Peterson NA, McKean CM. Cerebral lipid metabolism in experimental hyperphenylalaninaemia: incorporation of 14 C-labelled glucose into total lipids. J Neurochem. 1970;17(2):279–284. doi: 10.1111/j.1471-4159.1970.tb02211.x.
    1. Patel MS, Owen O. Effect of hyperphenylalaninaemia on lipid synthesis from ketone bodies by rat brain. Biochem J. 1976;154(2):319–325.
    1. Ishii H, Koshimizu T, Usami S, Fujimoto T. Toxicity of aspartame and its diketopiperazine for Wistar rats by dietary administration for 104 weeks. Toxicology. 1981;21(2):91–94. doi: 10.1016/0300-483X(81)90119-0.
    1. Bazzano G, D'Elia JA, Olson RE. Monosodium glutamate: feeding of large amounts in man and gerbils. Science. 1970;169:1208–1209. doi: 10.1126/science.169.3951.1208.
    1. Saegusa H, Nakagawa Y, Liu YJ, Ohzeki T. Influence of placental 11beta-hydroxysteroid dehydrogenase (11beta-HSD) inhibition on glucose metabolism and 11beta-HSD regulation in adult offspring of rats. Metabolism. 1999;48:1584–1588. doi: 10.1016/S0026-0495(99)90249-4.
    1. Lesage J, Del-Favero F, Leonhardt M, Louvart H, Maccari S, Vieau D, Daraudery M. Prenatal stress induces intrauterine growth restriction and programmes glucose intolerance and feeding behaviour disturbances in the aged rat. J Endocrinol. 2004;181(2):291–296. doi: 10.1677/joe.0.1810291.
    1. Cederroth CR, Nef S. Fetal programming of adult glucose homeostasis in mice. PLoS One. 2009;4(9):e7281. doi: 10.1371/journal.pone.0007281.
    1. Al Mamun A, Cramb SM, O'Callaghan MJ, Williams GM, Najman JM. Childhood overweight status predicts diabetes at age 21 years: a follow-up study. Obesity (Silver Spring) 2009;17(6):1255–1261.

Source: PubMed

3
구독하다