The efficacy of Cognitive training in patients with VAsCular Cognitive Impairment, No dEmentia (the Cog-VACCINE study): study protocol for a randomized controlled trial

Yi Tang, Zude Zhu, Qing Liu, Fang Li, Jianwei Yang, Fangyu Li, Yi Xing, Jianping Jia, Yi Tang, Zude Zhu, Qing Liu, Fang Li, Jianwei Yang, Fangyu Li, Yi Xing, Jianping Jia

Abstract

Background: Vascular cognitive impairment, no dementia (VCIND) refers to cognitive deficits associated with underlying vascular causes that fall short of a dementia diagnosis. There is currently no treatment for VCIND. Computerized cognitive training, which has significantly improved cognitive function in healthy older adults and patients with cognitive impairment has not yet been applied to VCIND.

Methods/design: The proposed study is a three-center, double-blinded, randomized controlled trial that will include 60 patients with VCIND. The patients will be randomized to either a training or a control group. The intervention is internet-based cognitive training performed for 30 min over 35 sessions. Neuropsychological assessment and functional and structural MRI will be performed before and after 7 weeks training. Primary outcomes are global cognitive function and executive function. Secondary outcome measures are neuroplasticity changes measured by functional and structural MRI.

Discussion: Applying an internet-based, multi-domain, adaptive program, this study aims to assess whether cognitive training improves cognitive abilities and neural plasticity in patients with subcortical VCIND. In addition to the comprehensive assessment of the participants by neuropsychological tests, cerebrovascular risk factors and apolipoprotein E genotyping, neuroplasticity will be used as an evaluation outcome in this study for, to our knowledge, the first time. The combination of functional and structural MRI and neuropsychological tests will have strong sensitivity in evaluating the effects of cognitive training and will also reveal the underlying mechanisms at work.

Trial registration: ClinicalTrials.gov NCT02640716 . Retrospectively registered on 21 December 2015.

Keywords: Cognitive training; Magnetic resonance imaging; Neuroplasticity; No dementia; Protocol; Randomized controlled clinical trial; Vascular cognitive impairment.

Figures

Fig. 1
Fig. 1
Overview of the flow of participants through the trial

References

    1. Prince MJ, Wu F, Guo Y, Gutierrez Robledo LM, O’Donnell M, Sullivan R, Yusuf S. The burden of disease in older people and implications for health policy and practice. Lancet. 2015;385(9967):549–62. doi: 10.1016/S0140-6736(14)61347-7.
    1. Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black SE, Powers WJ, DeCarli C, Merino JG, Kalaria RN, et al. National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke. 2006;37(9):2220–41. doi: 10.1161/01.STR.0000237236.88823.47.
    1. Sachdev P, Kalaria R, O’Brien J, Skoog I, Alladi S, Black SE, Blacker D, Blazer DG, Chen C, Chui H, et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord. 2014;28(3):206–18. doi: 10.1097/WAD.0000000000000034.
    1. Wentzel C, Rockwood K, MacKnight C, Hachinski V, Hogan DB, Feldman H, Ostbye T, Wolfson C, Gauthier S, Verreault R, et al. Progression of impairment in patients with vascular cognitive impairment without dementia. Neurology. 2001;57(4):714–6. doi: 10.1212/WNL.57.4.714.
    1. Stephan BC, Matthews FE, Khaw KT, Dufouil C, Brayne C. Beyond mild cognitive impairment: vascular cognitive impairment, no dementia (VCIND) Alzheimers Res Ther. 2009;1(1):4. doi: 10.1186/alzrt4.
    1. Jia J, Zhou A, Wei C, Jia X, Wang F, Li F, Wu X, Mok V, Gauthier S, Tang M, et al. The prevalence of mild cognitive impairment and its etiological subtypes in elderly Chinese. Alzheimers Dement. 2014;10(4):439–47. doi: 10.1016/j.jalz.2013.09.008.
    1. Rockwood K, Wentzel C, Hachinski V, Hogan DB, MacKnight C, McDowell I. Prevalence and outcomes of vascular cognitive impairment. Vascular Cognitive Impairment Investigators of the Canadian Study of Health and Aging. Neurology. 2000;54(2):447–51. doi: 10.1212/WNL.54.2.447.
    1. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701. doi: 10.1016/S1474-4422(10)70104-6.
    1. Jokinen H, Kalska H, Mantyla R, Pohjasvaara T, Ylikoski R, Hietanen M, Salonen O, Kaste M, Erkinjuntti T. Cognitive profile of subcortical ischaemic vascular disease. J Neurol Neurosurg Psychiatry. 2006;77(1):28–33. doi: 10.1136/jnnp.2005.069120.
    1. Kramer JH, Reed BR, Mungas D, Weiner MW, Chui HC. Executive dysfunction in subcortical ischaemic vascular disease. J Neurol Neurosurg Psychiatry. 2002;72(2):217–20. doi: 10.1136/jnnp.72.2.217.
    1. Tierney MC, Black SE, Szalai JP, Snow WG, Fisher RH, Nadon G, Chui HC. Recognition memory and verbal fluency differentiate probable Alzheimer disease from subcortical ischemic vascular dementia. Arch Neurol. 2001;58(10):1654–9. doi: 10.1001/archneur.58.10.1654.
    1. Ramos-Estebanez C, Moral-Arce I, Gonzalez-Mandly A, Dhagubatti V, Gonzalez-Macias J, Munoz R, Hernadez-Hernandez JL. Vascular cognitive impairment in small vessel disease: clinical and neuropsychological features of lacunar state and Binswanger’s disease. Age Ageing. 2011;40(2):175–80. doi: 10.1093/ageing/afq169.
    1. Toril P, Reales JM, Ballesteros S. Video game training enhances cognition of older adults: a meta-analytic study. Psychol Aging. 2014;29(3):706–16. doi: 10.1037/a0037507.
    1. Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, Kong E, Larraburo Y, Rolle C, Johnston E, et al. Video game training enhances cognitive control in older adults. Nature. 2013;501(7465):97–101. doi: 10.1038/nature12486.
    1. Gates NJ, Sachdev P. Is cognitive training an effective treatment for preclinical and early Alzheimer’s disease? J Alzheimers Dis. 2014;42(Suppl 4):S551–559.
    1. Simon SS, Yokomizo JE, Bottino CM. Cognitive intervention in amnestic mild cognitive impairment: a systematic review. Neurosci Biobehav Rev. 2012;36(4):1163–78. doi: 10.1016/j.neubiorev.2012.01.007.
    1. Fiatarone Singh MA, Gates N, Saigal N, Wilson GC, Meiklejohn J, Brodaty H, Wen W, Singh N, Baune BT, Suo C, et al. The Study of Mental and Resistance Training (SMART) study-resistance training and/or cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc. 2014;15(12):873–80. doi: 10.1016/j.jamda.2014.09.010.
    1. Barnes DE, Santos-Modesitt W, Poelke G, Kramer AF, Castro C, Middleton LE, Yaffe K. The Mental Activity and EXercise (MAX) trial: a randomized controlled trial to enhance cognitive function in older adults. JAMA Intern Med. 2013;173(9):797–804. doi: 10.1001/jamainternmed.2013.189.
    1. Li H, Li J, Li N, Li B, Wang P, Zhou T. Cognitive intervention for persons with mild cognitive impairment: a meta-analysis. Ageing Res Rev. 2011;10(2):285–96. doi: 10.1016/j.arr.2010.11.003.
    1. Herrera C, Chambon C, Michel BF, Paban V, Alescio-Lautier B. Positive effects of computer-based cognitive training in adults with mild cognitive impairment. Neuropsychologia. 2012;50(8):1871–81. doi: 10.1016/j.neuropsychologia.2012.04.012.
    1. Buschert VC, Giegling I, Teipel SJ, Jolk S, Hampel H, Rujescu D, Buerger K. Long-term observation of a multicomponent cognitive intervention in mild cognitive impairment. J Clin Psychiatry. 2012;73(12):e1492–1498. doi: 10.4088/JCP.11m07270.
    1. Belleville S, Clement F, Mellah S, Gilbert B, Fontaine F, Gauthier S. Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain. 2011;134(Pt 6):1623–34. doi: 10.1093/brain/awr037.
    1. Hosseini SM, Kramer JH, Kesler SR. Neural correlates of cognitive intervention in persons at risk of developing Alzheimer’s disease. Front Aging Neurosci. 2014;6:231. doi: 10.3389/fnagi.2014.00231.
    1. Gutchess A. Plasticity of the aging brain: new directions in cognitive neuroscience. Science. 2014;346(6209):579–82. doi: 10.1126/science.1254604.
    1. Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth O, Larsen VA, Walhovd KB. Effects of memory training on cortical thickness in the elderly. Neuroimage. 2010;52(4):1667–76. doi: 10.1016/j.neuroimage.2010.05.041.
    1. Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth O, Larsen VA, Walhovd KB. Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Hum Brain Mapp. 2012;33(10):2390–406. doi: 10.1002/hbm.21370.
    1. Chapman SB, Aslan S, Spence JS, Hart JJ, Jr, Bartz EK, Didehbani N, Keebler MW, Gardner CM, Strain JF, DeFina LF, et al. Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors. Cereb Cortex. 2015;25(2):396–405. doi: 10.1093/cercor/bht234.
    1. Schulz KF, Altman DG, Moher D, Group C. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2011;9(8):672–7. doi: 10.1016/j.ijsu.2011.09.004.
    1. Boutron I, Moher D, Altman DG, Schulz KF, Ravaud P, Group C. Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: explanation and elaboration. Ann Intern Med. 2008;148(4):295–309. doi: 10.7326/0003-4819-148-4-200802190-00008.
    1. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, et al. Mild cognitive impairment – beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240–6. doi: 10.1111/j.1365-2796.2004.01380.x.
    1. Association AP. DSM-IV: diagnostic and statistical manual of mental disorders. 4. Washington, DC: American Psychiatric Association; 1994.
    1. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140:566–72. doi: 10.1192/bjp.140.6.566.
    1. Folstein MF, Folstein SE, McHugh PR. ‘Mini-mental state’: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. doi: 10.1016/0022-3956(75)90026-6.
    1. Zhang MY, Katzman R, Salmon D, Jin H, Cai GJ, Wang ZY, Qu GY, Grant I, Yu E, Levy P, et al. The prevalence of dementia and Alzheimer’s disease in Shanghai, China: impact of age, gender, and education. Ann Neurol. 1990;27(4):428–37. doi: 10.1002/ana.410270412.
    1. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351–6. doi: 10.2214/ajr.149.2.351.
    1. Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, Kuiper M, Steinling M, Wolters EC, Valk J. Atrophy of medial temporal lobes on MRI in ‘probable’ Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55(10):967–72. doi: 10.1136/jnnp.55.10.967.
    1. Han X, Shi D, Zhou X, Yang Y, Zhu Z. The training and transfer effect of cognitive training in old adults. Adv Psychol Sci. 2016;24(6):909–22.
    1. Kueider AM, Parisi JM, Gross AL, Rebok GW. Computerized cognitive training with older adults: a systematic review. PLoS One. 2012;7(7) doi: 10.1371/journal.pone.0040588.

Source: PubMed

3
구독하다