Potential Synergies of β-Hydroxybutyrate and Butyrate on the Modulation of Metabolism, Inflammation, Cognition, and General Health

Franco Cavaleri, Emran Bashar, Franco Cavaleri, Emran Bashar

Abstract

The low-carbohydrate high-fat diet (LCHFD), also known as the ketogenic diet, has cycled in and out of popularity for decades as a therapeutic program to treat metabolic syndrome, weight mismanagement, and drug-resistant disorders as complex as epilepsy, cancer, dementia, and depression. Despite the benefits of this diet, health care professionals still question its safety due to the elevated serum ketones it induces and the limited dietary fiber. To compound the controversy, patient compliance with the program is poor due to the restrictive nature of the diet and symptoms related to energy deficit and gastrointestinal adversity during the introductory and energy substrate transition phase of the diet. The studies presented here demonstrate safety and efficacy of the diet including the scientific support and rationale for the administration of exogenous ketone bodies and ketone sources as a complement to the restrictive dietary protocol or as an alternative to the diet. This review also highlights the synergy provided by exogenous ketone, β-hydroxybutyrate (BHB), accompanied by the short chain fatty acid, butyrate (BA) in the context of cellular and physiological outcomes. More work is needed to unveil the molecular mechanisms by which this program provides health benefits.

References

    1. Gjedde A., Crone C. Induction processes in blood-brain transfer of ketone bodies during starvation. American Journal of Physiology–Legacy Content. 1975;229(5):1165–1169. doi: 10.1152/ajplegacy.1975.229.5.1165.
    1. Pollay M., Alan Stevens F. Starvation-induced changes in transport of ketone bodies across the blood-brain barrier. Journal of Neuroscience Research. 1980;5(2):163–172. doi: 10.1002/jnr.490050208.
    1. Cunnane S., Nugent S., Roy M., et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition. 2011;27(1):3–20. doi: 10.1016/j.nut.2010.07.021.
    1. Reger M. A., Henderson S. T., Hale C., et al. Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiology of Aging. 2004;25(3):311–314. doi: 10.1016/s0197-4580(03)00087-3.
    1. Costantini L. C., Barr L. J., Vogel J. L., Henderson S. T. Hypometabolism as a therapeutic target in Alzheimer’s disease. BMC Neuroscience. 2008;9(2):p. S16. doi: 10.1186/1471-2202-9-s2-s16.
    1. Leonard W. R. Dietary change was a driving force in human evolution. Scientific American. 2002;287(6):106–116. doi: 10.1038/scientificamerican1202-106.
    1. Innis S. M. Dietary (n−3) fatty acids and brain development. Journal of Nutrition. 2007;137(4):855–859. doi: 10.1093/jn/137.4.855.
    1. Cohen E., Cragg M., Hite A., Rosenberg M., Zhou B. Statistical review of US macronutrient consumption data, 1965–2011: Americans have been following dietary guidelines, coincident with the rise in obesity. Nutrition. 2015;31(5):727–732. doi: 10.1016/j.nut.2015.02.007.
    1. Scholl J. Traditional dietary recommendations for the prevention of cardiovascular disease: do they meet the needs of our patients? Cholesterol. 2012;2012:1–9. doi: 10.1155/2012/367898.
    1. Mullins G., Hallam C., Broom I. Ketosis, ketoacidosis and very-low-calorie diets: putting the record straight. Nutrition Bulletin. 2011;36(3):397–402. doi: 10.1111/j.1467-3010.2011.01916.x.
    1. Layman D. K., Walker D. A. Potential importance of leucine in treatment of obesity and the metabolic syndrome. Journal of Nutrition. 2006;136(1):319S–323S. doi: 10.1093/jn/136.1.319s.
    1. Lawson M., Shaw V. Clinical Paediatric Dietetics. 2nd. Oxford, UK: Blackwell Science Ltd.; 2001. Ketogenic diet for epilepsy; pp. 222–232.
    1. Krikorian R., Shidler M. D., Dangelo K., Couch S. C., Benoit S. C., Clegg D. J. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiology of Aging. 2012;33(2):425. e19–425. e27. doi: 10.1016/j.neurobiolaging.2010.10.006.
    1. Barañano K. W., Hartman A. L. The ketogenic diet: uses in epilepsy and other neurologic illnesses. Current Treatment Options in Neurology. 2008;10(6):410–419. doi: 10.1007/s11940-008-0043-8.
    1. Sullivan P. G., Rippy N. A., Dorenbos K., Concepcion R. C., Agarwal A. K., Rho J. M. The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Annals of Neurology. 2004;55(4):576–580. doi: 10.1002/ana.20062.
    1. Westman E. C., Mavropoulos J., Yancy W. S., Jr., Volek J. S. A review of low-carbohydrate ketogenic diets. Current Atherosclerosis Reports. 2003;5(6):476–483. doi: 10.1007/s11883-003-0038-6.
    1. Maruschak K. M. Impact of a Low-Carbohydrate, High-Fat Modified Ketogenic Diet on Anthropometrics, Biochemical Values, and Gastrointestinal Symptoms in Adult Patients with Epilepsy. Chicago, IL, USA: Rush University; 2016.
    1. Send S. R. The Impact of a Low-Carbohydrate, High-Fat Modified Ketogenic Diet on Seizure Severity, Seizure Frequency, and Quality of Life in Adult Patients with Epilepsy. Chicago, IL, USA: Rush University; 2016.
    1. Dudick C. “Carb”(not “Keto”) is a Four Letter Word. 2016.
    1. Schmidt M., Pfetzer N., Schwab M., Strauss I., Kämmerer U. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: a pilot trial. Nutrition and Metabolism. 2011;8(1):p. 54. doi: 10.1186/1743-7075-8-54.
    1. Layman D. K., Baum J. I. Dietary protein impact on glycemic control during weight loss. Journal of Nutrition. 2004;134(4):968S–973S. doi: 10.1093/jn/134.4.968s.
    1. Remesy C., Fafournoux P., Demigne C. Control of hepatic utilization of serine, glycine and threonine in fed and starved rats. Journal of Nutrition. 1983;113(1):28–39. doi: 10.1093/jn/113.1.28.
    1. Krilanovich N. J. Benefits of ketogenic diets. American Journal of Clinical Nutrition. 2007;85(1):238–239. doi: 10.1093/ajcn/85.1.238.
    1. Kim D. W., Kang H. C., Park J. C., Kim H. D. Benefits of the nonfasting ketogenic diet compared with the initial fasting ketogenic diet. Pediatrics. 2004;114(6):1627–1630. doi: 10.1542/peds.2004-1001.
    1. Veech R. L. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2004;70(3):309–319. doi: 10.1016/j.plefa.2003.09.007.
    1. McGarry J. D. Disordered metabolism in diabetes: have we underemphasized the fat component? Journal of Cellular Biochemistry. 1994;55(S1994A):29–38. doi: 10.1002/jcb.240550005.
    1. Newman J. C., Verdin E. Ketone bodies as signaling metabolites. Trends in Endocrinology and Metabolism. 2014;25(1):42–52. doi: 10.1016/j.tem.2013.09.002.
    1. Owen O., Reichard G., Jr., Markus H., Boden G., Mozzoli M., Shuman C. Rapid intravenous sodium acetoacetate infusion in man metabolic and kinetic responses. Journal of Clinical Investigation. 1973;52(10):2606–2616. doi: 10.1172/jci107453.
    1. Balasse E. O., Féry F. Ketone body production and disposal: effects of fasting, diabetes, and exercise. Diabetes/Metabolism Reviews. 1989;5(3):247–270. doi: 10.1002/dmr.5610050304.
    1. Wilson R., Reeves W. Neutrophil phagocytosis and killing in insulin-dependent diabetes. Clinical and Experimental Immunology. 1986;63(2):p. 478.
    1. Brownlee M., Vlassara H., Kooney A., Ulrich P., Cerami A. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science. 1986;232(4758):1629–1632. doi: 10.1126/science.3487117.
    1. Ahmed N. Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Research and Clinical Practice. 2005;67(1):3–21. doi: 10.1016/j.diabres.2004.09.004.
    1. Marceau P., Biron S., Hould F. S., et al. Liver pathology and the metabolic syndrome X in severe obesity. Journal of Clinical Endocrinology and Metabolism. 1999;84(5):1513–1517. doi: 10.1210/jc.84.5.1513.
    1. Donath M. Y., Shoelson S. E. Type 2 diabetes as an inflammatory disease. Nature Reviews Immunology. 2011;11(2):98–107. doi: 10.1038/nri2925.
    1. Moley K., Chi M. Y., Knudson C., Korsmeyer S., Mueckler M. Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways. Nature Medicine. 1998;4(12):1421–1424. doi: 10.1038/4013.
    1. Hays S. P., Smith E. B., Sunehag A. L. Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants. Pediatrics. 2006;118(5):1811–1818. doi: 10.1542/peds.2006-0628.
    1. Vlassara H. Advanced glycation end-products and atherosclerosis. Annals of Medicine. 1996;28(5):419–426. doi: 10.3109/07853899608999102.
    1. Yki-Jarvinen H. Glucose Toxicity∗. Endocrine Reviews. 1992;13(3):415–431. doi: 10.1210/edrv-13-3-415.
    1. Madison L. L., Mebane D., Unger R. H., Lochner A. The hypoglycemic action of ketones. II. Evidence for a stimulatory feedback of ketones on the pancreatic beta cells. Journal of Clinical Investigation. 1964;43(3):408–415. doi: 10.1172/jci104925.
    1. Baron A., Brechtel G., Edelman S. Effects of free fatty acids and ketone bodies on in vivo non-insulin-mediated glucose utilization and production in humans. Metabolism. 1989;38(11):1056–1061. doi: 10.1016/0026-0495(89)90040-1.
    1. Hussain T. A., Mathew T. C., Dashti A. A., Asfar S., Al-Zaid N., Dashti H. M. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012;28(10):1016–1021. doi: 10.1016/j.nut.2012.01.016.
    1. Noakes T. D. Low-carbohydrate and high-fat intake can manage obesity and associated conditions: occasional survey. South African Medical Journal. 2013;103(11):826–830. doi: 10.7196/samj.7302.
    1. Ratliff J., Mutungi G., Puglisi M. J., Volek J. S., Fernandez M. L. Carbohydrate restriction (with or without additional dietary cholesterol provided by eggs) reduces insulin resistance and plasma leptin without modifying appetite hormones in adult men. Nutrition Research. 2009;29(4):262–268. doi: 10.1016/j.nutres.2009.03.007.
    1. Volek J. S., Sharman M. J., Love D. M., Avery N. G., Scheett T. P., Kraemer W. J. Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism. 2002;51(7):864–870. doi: 10.1053/meta.2002.32037.
    1. Major C. A., Henry M. J., de Veciana M., Morgan M. A. The effects of carbohydrate restriction in patients with diet-controlled gestational diabetes. Obstetrics and Gynecology. 1998;91(4):600–604. doi: 10.1016/s0029-7844(98)00003-9.
    1. Accurso A., Bernstein R. K., Dahlqvist A., et al. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal. Nutrition and Metabolism. 2008;5(1):p. 9. doi: 10.1186/1743-7075-5-9.
    1. Feinman R. D., Pogozelski W. K., Astrup A., et al. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition. 2015;31(1):1–13. doi: 10.1016/j.nut.2014.06.011.
    1. Badman M. K., Kennedy A. R., Adams A. C., Pissios P., Maratos-Flier E. A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss. American Journal of Physiology-Endocrinology and Metabolism. 2009;297(5):E1197–E1204. doi: 10.1152/ajpendo.00357.2009.
    1. Xu K., Sun X., Eroku B. O., Tsipis C. P., Puchowicz M. A., LaManna J. C. Advances in Experimental Medicine and Biology. Berlin, Germany: Springer; 2010. Diet-induced ketosis improves cognitive performance in aged rats; pp. 71–75.
    1. Ballard K. D., Quann E. E., Kupchak B. R., et al. Dietary carbohydrate restriction improves insulin sensitivity, blood pressure, microvascular function, and cellular adhesion markers in individuals taking statins. Nutrition Research. 2013;33(11):905–912. doi: 10.1016/j.nutres.2013.07.022.
    1. Hawkins R. A., Mans A. M., Davis D. W. Regional ketone body utilization by rat brain in starvation and diabetes. American Journal of Physiology-Endocrinology and Metabolism. 1986;250(2):E169–E178. doi: 10.1152/ajpendo.1986.250.2.e169.
    1. Seyfried T. N., Mukherjee P. Targeting energy metabolism in brain cancer: review and hypothesis. Nutrition and Metabolism. 2005;2(1):p. 30. doi: 10.1186/1743-7075-2-30.
    1. Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes/Metabolism Research and Reviews. 1999;15(6):412–426. doi: 10.1002/(sici)1520-7560(199911/12)15:6<412::aid-dmrr72>;2-8.
    1. Krebs H. The regulation of the release of ketone bodies by the liver. Advances in Enzyme Regulation. 1966;4:339–353. doi: 10.1016/0065-2571(66)90027-6.
    1. McGarry J., Foster D. Regulation of hepatic fatty acid oxidation and ketone body production. Annual Review of Biochemistry. 1980;49(1):395–420. doi: 10.1146/annurev.bi.49.070180.002143.
    1. Newport M. T., VanItallie T. B., Kashiwaya Y., King M. T., Veech R. L. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzheimer’s and Dementia. 2015;11(1):99–103. doi: 10.1016/j.jalz.2014.01.006.
    1. Westman E. C., Feinman R. D., Mavropoulos J. C., et al. Low-carbohydrate nutrition and metabolism. American Journal of Clinical Nutrition. 2007;86(2):276–284. doi: 10.1093/ajcn/86.2.276.
    1. Harvey C. What is Nutritional Ketosis? 2015.
    1. Kodde I. F., van der Stok J., Smolenski R. T., de Jong J. W. Metabolic and genetic regulation of cardiac energy substrate preference. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology. 2007;146(1):26–39. doi: 10.1016/j.cbpa.2006.09.014.
    1. Plecko B., Stoeckler-Ipsiroglu S., Schober E., et al. Oral β-hydroxybutyrate supplementation in two patients with hyperinsulinemic hypoglycemia: monitoring of β-hydroxybutyrate levels in blood and cerebrospinal fluid, and in the brain by in vivo magnetic resonance spectroscopy. Pediatric Research. 2002;52(2):301–306. doi: 10.1203/01.pdr.0000019439.27135.2b.
    1. White H., Venkatesh B. Clinical review: ketones and brain injury. Critical Care. 2011;15(2):p. 219. doi: 10.1186/cc10020.
    1. Vining E. P. Clinical efficacy of the ketogenic diet. Epilepsy Research. 1999;37(3):181–190. doi: 10.1016/s0920-1211(99)00070-4.
    1. Kossoff E. H., Zupec-Kania B. A., Rho J. M. Ketogenic diets: an update for child neurologists. Journal of Child Neurology. 2009;24(8):979–988. doi: 10.1177/0883073809337162.
    1. Cahill G. F., Jr. Fuel metabolism in starvation. Annual Review of Nutrition. 2006;26(1):1–22. doi: 10.1146/annurev.nutr.26.061505.111258.
    1. Gasior M., Rogawski M. A., Hartman A. L. Neuroprotective and disease-modifying effects of the ketogenic diet. Behavioural Pharmacology. 2006;17(5-6):431–439. doi: 10.1097/00008877-200609000-00009.
    1. de Oliveira Caminhotto R., Lima F. B. Low carbohydrate high fat diets: when models do not match reality. Archives of Endocrinology and Metabolism. 2016;60(4):405–406. doi: 10.1590/2359-3997000000177.
    1. Abdelwahab M. G., Lee S. H., O’Neill D., et al. Ketones prevent oxidative impairment of hippocampal synaptic integrity through K ATP channels. PLoS One. 2015;10(4) doi: 10.1371/journal.pone.0119316.e0119316
    1. Yin J. X., Maalouf M., Han P., et al. Ketones block amyloid entry and improve cognition in an Alzheimer’s model. Neurobiology of Aging. 2016;39:25–37. doi: 10.1016/j.neurobiolaging.2015.11.018.
    1. Zhang J., Cao Q., Li S., et al. 3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism. Biomaterials. 2013;34(30):7552–7562. doi: 10.1016/j.biomaterials.2013.06.043.
    1. Siegel L., Robin N. I., McDonald L. J. New approach to determination of total ketone bodies in serum. Clinical Chemistry. 1977;23(1):46–49.
    1. Angus D. J., Hargreaves M., Dancey J., Febbraio M. A. Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. Journal of Applied Physiology. 2000;88(1):113–119. doi: 10.1152/jappl.2000.88.1.113.
    1. Misell L., Lagomarcino N., Schuster V., Kern M. Chronic medium-chain triacylglycerol consumption and endurance performance in trained runners. Journal of Sports Medicine and Physical Fitness. 2001;41(2):p. 210.
    1. Ööpik V., Timpmann S., Medijainen L., Lemberg H. Effects of daily medium-chain triglyceride ingestion on energy metabolism and endurance performance capacity in well-trained runners. Nutrition Research. 2001;21(8):1125–1135. doi: 10.1016/s0271-5317(01)00319-0.
    1. Liu Y. M. C. Medium-chain triglyceride (MCT) ketogenic therapy. Epilepsia. 2008;49(s8):33–36. doi: 10.1111/j.1528-1167.2008.01830.x.
    1. Jeukendrup A. E., Saris W., Schrauwen P., Brouns F., Wagenmakers A. Metabolic availability of medium-chain triglycerides coingested with carbohydrates during prolonged exercise. Journal of Applied Physiology. 1995;79(3):756–762. doi: 10.1152/jappl.1995.79.3.756.
    1. Poff A., Ari C., Arnold P., Seyfried T., D’Agostino D. Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. International Journal of Cancer. 2014;135(7):1711–1720. doi: 10.1002/ijc.28809.
    1. Youm Y. H., Nguyen K. Y., Grant R. W., et al. The ketone metabolite [beta]-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nature Medicine. 2015;21(3):263–269. doi: 10.1038/nm.3804.
    1. D’Agostino D. P., Pilla R., Held H. E., et al. Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2013;304(10):R829–R836. doi: 10.1152/ajpregu.00506.2012.
    1. Gormsen L. C., Svart M., Thomsen H. H., et al. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study. Journal of the American Heart Association. 2017;6(3):p. e005066. doi: 10.1161/jaha.116.005066.
    1. Henderson S. T., Vogel J. L., Barr L. J., Garvin F., Jones J. J., Costantini L. C. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutrition and Metabolism. 2009;6(1):p. 31. doi: 10.1186/1743-7075-6-31.
    1. Arnaiz E., Jelic V., Almkvist O., et al. Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment. Neuroreport. 2001;12(4):851–855. doi: 10.1097/00001756-200103260-00045.
    1. Gong C. X., Liu F., Iqbal K. Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation. Journal of Alzheimer’s Disease. 2006;9(1):1–12. doi: 10.3233/jad-2006-9101.
    1. Messier C. Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiology of Aging. 2005;26(1):26–30. doi: 10.1016/j.neurobiolaging.2005.09.014.
    1. Henderson S. T. Ketone bodies as a therapeutic for Alzheimer’s disease. Neurotherapeutics. 2008;5(3):470–480. doi: 10.1016/j.nurt.2008.05.004.
    1. VanItallie T. B., Nufert T. H. Ketones: metabolism’s ugly duckling. Nutrition Reviews. 2003;61(10):327–341. doi: 10.1301/nr.2003.oct.327-341.
    1. Maalouf M., Sullivan P. G., Davis L., Kim D. Y., Rho J. M. Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience. 2007;145(1):256–264. doi: 10.1016/j.neuroscience.2006.11.065.
    1. Henderson C. B., Filloux F. M., Alder S. C., Lyon J. L., Caplin D. A. Efficacy of the ketogenic diet as a treatment option for epilepsy: meta-analysis. Journal of Child Neurology. 2006;21(3):193–198. doi: 10.2310/7010.2006.00044.
    1. Sirven J., Whedon B., Caplan D., et al. The ketogenic diet for intractable epilepsy in adults: preliminary results. Epilepsia. 1999;40(12):1721–1726. doi: 10.1111/j.1528-1157.1999.tb01589.x.
    1. McNally M. A., Hartman A. L. Ketone bodies in epilepsy. Journal of Neurochemistry. 2012;121(1):28–35. doi: 10.1111/j.1471-4159.2012.07670.x.
    1. Murray A. J., Knight N. S., Cole M. A., et al. Novel ketone diet enhances physical and cognitive performance. Federation of American Societies for Experimental Biology Journal. 2016;30(12):4021–4032. doi: 10.1096/fj.201600773r.
    1. Pinckaers P. J., Churchward-Venne T. A., Bailey D., van Loon L. J. Ketone bodies and exercise performance: the next magic bullet or merely hype? Sports Medicine. 2017;47(3):383–391. doi: 10.1007/s40279-016-0577-y.
    1. Larsen T., Nielsen N. I. Fluorometric determination of β-hydroxybutyrate in milk and blood plasma. Journal of Dairy Science. 2005;88(6):2004–2009. doi: 10.3168/jds.s0022-0302(05)72876-9.
    1. Nielsen N. I., Larsen T., Bjerring M., Ingvartsen K. L. Quarter health, milking interval, and sampling time during milking affect the concentration of milk constituents. Journal of Dairy Science. 2005;88(9):3186–3200. doi: 10.3168/jds.s0022-0302(05)73002-2.
    1. Stubbs B., Willerton K., Hiyama S., Clarke K., Cox P. Concomitant Meal Ingestion Alters Levels of Circulating Ketone Bodies following a Ketone Ester Drink. London, UK: The Physiological Society; 2015.
    1. Clarke K., Tchabanenko K., Pawlosky R., et al. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regulatory Toxicology and Pharmacology. 2012;63(3):401–408. doi: 10.1016/j.yrtph.2012.04.008.
    1. Clarke K., Tchabanenko K., Pawlosky R., et al. Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate. Regulatory Toxicology and Pharmacology. 2012;63(2):196–208. doi: 10.1016/j.yrtph.2012.04.001.
    1. Van Hove J. L., Grünewald S., Jaeken J., et al. D, L-3-hydroxybutyrate treatment of multiple acyl-CoA dehydrogenase deficiency (MADD) The Lancet. 2003;361(9367):1433–1435. doi: 10.1016/s0140-6736(03)13105-4.
    1. Endo H., Niioka M., Kobayashi N., Tanaka M., Watanabe T. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS One. 2013;8(5) doi: 10.1371/journal.pone.0063388.e63388
    1. Maslowski K. M., Mackay C. R. Diet, gut microbiota and immune responses. Nature Immunology. 2011;12(1):5–9. doi: 10.1038/ni0111-5.
    1. Tuohy K. M., Conterno L., Gasperotti M., Viola R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. Journal of Agricultural and Food Chemistry. 2012;60(36):8776–8782. doi: 10.1021/jf2053959.
    1. Wong J. M., De Souza R., Kendall C. W., Emam A., Jenkins D. J. Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology. 2006;40(3):235–243. doi: 10.1097/00004836-200603000-00015.
    1. Velasquez-Manoff M. Gut microbiome: the peacekeepers. Nature. 2015;518(7540):S3–S11. doi: 10.1038/518s3a.
    1. Kanauchi O., Iwanaga T., Mitsuyama K., et al. Butyrate from bacterial fermentation of germinated barley foodstuff preserves intestinal barrier function in experimental colitis in the rat model. Journal of Gastroenterology and Hepatology. 1999;14(9):880–888. doi: 10.1046/j.1440-1746.1999.01971.x.
    1. Yadav H., Lee J. H., Lloyd J., Walter P., Rane S. G. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. Journal of Biological Chemistry. 2013;288(35):25088–25097. doi: 10.1074/jbc.m113.452516.
    1. Kim H. J., Leeds P., Chuang D. M. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. Journal of Neurochemistry. 2009;110(4):1226–1240. doi: 10.1111/j.1471-4159.2009.06212.x.
    1. Yamawaki Y., Fuchikami M., Morinobu S., Segawa M., Matsumoto T., Yamawaki S. Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus. World Journal of Biological Psychiatry. 2012;13(6):458–467. doi: 10.3109/15622975.2011.585663.
    1. Lin H. V., Frassetto A., Kowalik E. J., Jr., et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7(4) doi: 10.1371/journal.pone.0035240.e35240
    1. Gao Z., Yin J., Zhang J., et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–1517. doi: 10.2337/db08-1637.
    1. Tuohy K. M., Probert H. M., Smejkal C. W., Gibson G. R. Using probiotics and prebiotics to improve gut health. Drug Discovery Today. 2003;8(15):692–700. doi: 10.1016/s1359-6446(03)02746-6.
    1. Canani R. B., Di Costanzo M., Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clinical Epigenetics. 2012;4(1):p. 4. doi: 10.1186/preaccept-1764710053667755.
    1. Alvaro A., Sola R., Rosales R., et al. Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids. IUBMB Life. 2008;60(11):757–764. doi: 10.1002/iub.110.
    1. Finley J. W., Burrell J. B., Reeves P. G. Pinto bean consumption changes SCFA profiles in fecal fermentations, bacterial populations of the lower bowel, and lipid profiles in blood of humans. Journal of Nutrition. 2007;137(11):2391–2398. doi: 10.1093/jn/137.11.2391.
    1. Canfora E. E., Jocken J. W., Blaak E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology. 2015;11(10):577–591. doi: 10.1038/nrendo.2015.128.
    1. Darzi J., Frost G. S., Robertson M. D. Do SCFA have a role in appetite regulation? Proceedings of the Nutrition Society. 2011;70(1):119–128. doi: 10.1017/s0029665110004039.
    1. Hague A., Singh B., Paraskeva C. Butyrate acts as a survival factor for colonic epithelial cells: further fuel for the in vivo versus in vitro debate. Gastroenterology. 1997;112(3):1036–1040. doi: 10.1053/gast.1997.v112.agast971036.
    1. Davie J. R. Inhibition of histone deacetylase activity by butyrate. Journal of Nutrition. 2003;133(7):2485S–2493S. doi: 10.1093/jn/133.7.2485s.
    1. Stefanko D. P., Barrett R. M., Ly A. R., Reolon G. K., Wood M. A. Modulation of long-term memory for object recognition via HDAC inhibition. Proceedings of the National Academy of Sciences. 2009;106(23):9447–9452. doi: 10.1073/pnas.0903964106.
    1. Gray S. G. Epigenetic treatment of neurological disease. Epigenomics. 2011;3(4):431–450.
    1. Segain J., De La Blétiere D. R., Bourreille A., et al. Butyrate inhibits inflammatory responses through NFkappa B inhibition: implications for Crohn’s disease. Gut. 2000;47(3):397–403. doi: 10.1136/gut.47.3.397.
    1. Vieira E. L., Leonel A. J., Sad A. P., et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. Journal of Nutritional Biochemistry. 2012;23(5):430–436. doi: 10.1016/j.jnutbio.2011.01.007.
    1. Sabatino A., Morera R., Ciccocioppo R., et al. Oral butyrate for mildly to moderately active Crohn’s disease. Alimentary Pharmacology and Therapeutics. 2005;22(9):789–794. doi: 10.1111/j.1365-2036.2005.02639.x.
    1. Kotunia A., Wolinski J., Laubitz D., et al. Effect of sodium butyrate on the small intestine. Journal of Physiology and Pharmacology. 2004;55(2):59–68.
    1. Furusawa Y., Obata Y., Fukuda S., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–450. doi: 10.1038/nature12721.
    1. Hamer H. M., Jonkers D., Venema K., Vanhoutvin S., Troost F., Brummer R. J. Review article: the role of butyrate on colonic function. Alimentary Pharmacology and Therapeutics. 2008;27(2):104–119. doi: 10.1111/j.1365-2036.2007.03562.x.
    1. MacFabe D. F., Cain N. E., Boon F., Ossenkopp K. P., Cain D. P. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behavioural Brain Research. 2011;217(1):47–54. doi: 10.1016/j.bbr.2010.10.005.
    1. MacFabe D. F., Cain D. P., Rodriguez-Capote K., et al. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behavioural Brain Research. 2007;176(1):149–169. doi: 10.1016/j.bbr.2006.07.025.
    1. Kratsman N., Getselter D., Elliott E. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology. 2016;102:136–145. doi: 10.1016/j.neuropharm.2015.11.003.
    1. Bourassa M. W., Alim I., Bultman S. J., Ratan R. R. Butyrate, neuroepigenetics and the gut microbiome. Physiological Reviews. 2001;81:1031–1064.
    1. McNeil N. I., Cummings J., James W. Short chain fatty acid absorption by the human large intestine. Gut. 1978;19(9):819–822. doi: 10.1136/gut.19.9.819.
    1. Velazquez O. C., Lederer H. M., Rombeau J. L. Butyrate and the Colonocyte. Dietary Fiber in Health and Disease. Berlin, Germany: Springer; 1997.
    1. Sandle G. Salt and water absorption in the human colon: a modern appraisal. Gut. 1998;43(2):294–299. doi: 10.1136/gut.43.2.294.
    1. Havenaar R. Intestinal health functions of colonic microbial metabolites: a review. Beneficial Microbes. 2011;2(2):103–114. doi: 10.3920/bm2011.0003.
    1. Canani R. B., Terrin G., Cirillo P., et al. Butyrate as an effective treatment of congenital chloride diarrhea. Gastroenterology. 2004;127(2):630–634. doi: 10.1053/j.gastro.2004.03.071.
    1. Butzner J., Parmar R., Bell C., Dalal V. Butyrate enema therapy stimulates mucosal repair in experimental colitis in the rat. Gut. 1996;38(4):568–573. doi: 10.1136/gut.38.4.568.
    1. Li H., Gao Z., Zhang J., et al. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes. 2012;61(4):797–806. doi: 10.2337/db11-0846.
    1. Zhang X., Yeung D. C., Karpisek M., et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008;57(5):1246–1253. doi: 10.2337/db07-1476.
    1. Hird F., Symons R. The mechanism of ketone-body formation from butyrate in rat liver. Biochemical Journal. 1962;84(1):212–216. doi: 10.1042/bj0840212.
    1. Linskens R., Huijsdens X., Savelkoul P., Vandenbroucke-Grauls C., Meuwissen S. The bacterial flora in inflammatory bowel disease: current insights in pathogenesis and the influence of antibiotics and probiotics. Scandinavian Journal of Gastroenterology. 2001;36(234):29–40. doi: 10.1080/003655201753265082.
    1. Sartor R. B. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology. 2004;126(6):1620–1633. doi: 10.1053/j.gastro.2004.03.024.
    1. Taggart A. K., Kero J., Gan X., et al. (D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. Journal of Biological Chemistry. 2005;280(29):26649–26652. doi: 10.1074/jbc.c500213200.
    1. Egan B., D’Agostino D. P. Fueling performance: ketones enter the mix. Cell Metabolism. 2016;24(3):373–375. doi: 10.1016/j.cmet.2016.08.021.
    1. Murray A. J., Montgomery H. E. How wasting is saving: Weight loss at altitude might result from an evolutionary adaptation. Bioessays. 2014;36:721–729.
    1. Blad C. C., Ahmed K., Ijzerman A. P., Offermanns S. Biological and pharmacological roles of HCA receptors. Advances in Pharmacology. 2014;62:219–250. doi: 10.1016/b978-0-12-385952-5.00005-1.
    1. Offermanns S., Schwaninger M. Nutritional or pharmacological activation of HCA 2 ameliorates neuroinflammation. Trends in Molecular Medicine. 2015;21(4):245–255. doi: 10.1016/j.molmed.2015.02.002.
    1. Offermanns S. Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annual Review of Pharmacology and Toxicology. 2014;54(1):407–434. doi: 10.1146/annurev-pharmtox-011613-135945.
    1. Offermanns S., Colletti S. L., Lovenberg T. W., Semple G., Wise A., Ijzerman A. P. International union of basic and clinical pharmacology. LXXXII: nomenclature and classification of hydroxy-carboxylic acid receptors (GPR81, GPR109A, and GPR109B) Pharmacological Reviews. 2011;63(2):269–290. doi: 10.1124/pr.110.003301.
    1. Milder J. B., Liang L. P., Patel M. Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiology of Disease. 2010;40(1):238–244. doi: 10.1016/j.nbd.2010.05.030.
    1. Storoni M., Plant G. T. The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis. Multiple Sclerosis International. 2015;2015:9. doi: 10.1155/2015/681289.681289
    1. Sandberg M., Patil J., D’angelo B., Weber S. G., Mallard C. NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology. 2014;79:298–306. doi: 10.1016/j.neuropharm.2013.11.004.
    1. Huang H. C., Nguyen T., Pickett C. B. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. Journal of Biological Chemistry. 2002;277(45):42769–42774. doi: 10.1074/jbc.m206911200.
    1. Vriend J., Reiter R. J. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome. Molecular and Cellular Endocrinology. 2015;401:213–220. doi: 10.1016/j.mce.2014.12.013.
    1. Wei N., Yuan D., He H. B., et al. Saponins from Panax japonicas reduces myocardial infarction induced reactive oxygen species production and cardiomyocyte apoptosis via activation of the Nrf-2 pathway. Advanced Materials Research. 2014;881–883:339–346. doi: 10.4028/.
    1. Lee J. S., Surh Y. J. Nrf2 as a novel molecular target for chemoprevention. Cancer Letters. 2005;224(2):171–184. doi: 10.1016/j.canlet.2004.09.042.
    1. Braun S., Hanselmann C., Gassmann M. G., et al. Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Molecular and Cellular Biology. 2002;22(15):5492–5505. doi: 10.1128/mcb.22.15.5492-5505.2002.
    1. Shih A. Y., Imbeault S., Barakauskas V., et al. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. Journal of Biological Chemistry. 2005;280(24):22925–22936. doi: 10.1074/jbc.m414635200.
    1. Lee J. M., Shih A. Y., Murphy T. H., Johnson J. A. NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. Journal of Biological Chemistry. 2003;278(39):37948–37956. doi: 10.1074/jbc.m305204200.
    1. Thimmulappa R. K., Mai K. H., Srisuma S., Kensler T. W., Yamamoto M., Biswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Research. 2002;62(18):5196–5203.
    1. Thimmulappa R. K., Scollick C., Traore K., et al. Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide. Biochemical and Biophysical Research Communications. 2006;351(4):883–889. doi: 10.1016/j.bbrc.2006.10.102.
    1. Tufekci K. U., Civi Bayin E., Genc S., Genc K. The Nrf2/ARE pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease. Parkinson’s Disease. 2011;2011:p. 314082. doi: 10.4061/2011/314082.
    1. He X., Kan H., Cai L., Ma Q. Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. Journal of Molecular and Cellular Cardiology. 2009;46(1):47–58. doi: 10.1016/j.yjmcc.2008.10.007.
    1. Tan Y., Ichikawa T., Li J., et al. Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress–induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes. 2011;60(2):625–633. doi: 10.2337/db10-1164.
    1. Zheng H., Whitman S. A., Wu W., et al. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes. 2011;60(11):3055–3066. doi: 10.2337/db11-0807.
    1. Lee J. M., Li J., Johnson D. A., et al. Nrf2, a multi-organ protector? Federation of American Societies for Experimental Biology. 2005;19(9):1061–1066. doi: 10.1096/fj.04-2591hyp.
    1. Neymotin A., Calingasan N. Y., Wille E., et al. Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis. Free Radical Biology and Medicine. 2011;51(1):88–96. doi: 10.1016/j.freeradbiomed.2011.03.027.
    1. Yu S., Khor T. O., Cheung K. L., et al. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One. 2010;5(1) doi: 10.1371/journal.pone.0008579.e8579
    1. Nagatomo H., Morimoto Y., Ogami A., et al. Change of heme oxygenase-1 expression in lung injury induced by chrysotile asbestos in vivo and in vitro. Inhalation Toxicology. 2007;19(4):317–323. doi: 10.1080/08958370601144167.
    1. Suzuki S., Toledo-Pereyra L., Rodriguez F., Cejalvo D. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Transplantation. 1993;55(6):1265–1272. doi: 10.1097/00007890-199306000-00011.
    1. Bowman P. Amelioration of Ischemia/Reperfusion Injury During Resuscitation from Hemorrhage by Induction of Heme Oxygenase-1 (HO-1) in a Conscious Mouse Model of Uncontrolled Hemorrhage. 2012.
    1. Hinkel R., Petersen B., Thormann M., et al. hHO-1 overexpression in transgenic pigs is cardioprotective after acute myocardial ischemia and reperfsuion. Circulation. 2009;120(18):p. S1042.
    1. Yoshida T., Watanabe M., Engelman D. T., et al. Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology. 1996;28(8):1759–1767. doi: 10.1006/jmcc.1996.0165.
    1. Dhalla N. S., Elmoselhi A. B., Hata T., Makino N. Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovascular Research. 2000;47(3):446–456. doi: 10.1016/s0008-6363(00)00078-x.
    1. Dong W., Jia Y., Liu X., et al. Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC. Journal of Endocrinology. 2017;232(1):71–83. doi: 10.1530/joe-16-0322.
    1. Chen X., Su W., Wan T., et al. Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway. Biochemical Pharmacology. 2017;142:111–119. doi: 10.1016/j.bcp.2017.06.136.
    1. Hu X., Zhang K., Xu C., Chen Z., Jiang H. Anti-inflammatory effect of sodium butyrate preconditioning during myocardial ischemia/reperfusion. Experimental and Therapeutic Medicine. 2014;8(1):229–232. doi: 10.3892/etm.2014.1726.
    1. Yano S., Tierney D. F. Butyrate increases catalase activity and protects rat pulmonary artery smooth muscle cells against hyperoxia. Biochemical and Biophysical Research Communications. 1989;164(3):1143–1148. doi: 10.1016/0006-291x(89)91788-9.
    1. Walsh M. E., Bhattacharya A., Sataranatarajan K., et al. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell. 2015;14(6):957–970. doi: 10.1111/acel.12387.

Source: PubMed

3
구독하다