Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

Gabriele D Maurer, Daniel P Brucker, Oliver Bähr, Patrick N Harter, Elke Hattingen, Stefan Walenta, Wolfgang Mueller-Klieser, Joachim P Steinbach, Johannes Rieger, Gabriele D Maurer, Daniel P Brucker, Oliver Bähr, Patrick N Harter, Elke Hattingen, Stefan Walenta, Wolfgang Mueller-Klieser, Joachim P Steinbach, Johannes Rieger

Abstract

Background: Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells.

Methods: To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model.

Results: The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival.

Conclusion: In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways.

Figures

Figure 1
Figure 1
(A) Simplified diagram of cerebral ketone body metabolism. At times of glucose shortage, such as prolonged fasting, ketone bodies are an important energy source for the brain. The oxidoreductase 3-hydroxybutyrate dehydrogenase (BDH) mediates the first step of ketone body degradation, between 3-hydroxybutyrate and acetoacetate. 3-oxoacid-CoA transferase 1 (OXCT1) catalyzes the transfer of coenzyme A from succinyl-CoA to acetoacetate, generating acetoacetyl-CoA. Via acetyl-CoA acetyltransferase 1 (ACAT1), acetoacetyl-CoA is converted into two molecules of acetyl-CoA, which then enter the citric acid cycle. The utilization of ketone bodies results in an elevation of intracellular succinate, leading to HIF-1α stabilization via product inhibition of prolyl hydroxylases (PHD). Furthermore, ketone bodies provide substrates for the synthesis of various molecules, especially lipids. In this regard, acetoacetyl-CoA is formed in the cytoplasm from acetoacetate by the action of acetoacetyl-CoA synthetase (AACS). (B) The expression of the ketone body metabolizing enzymes was analyzed in five glioma cell lines as well as in normal brain (gray, gray matter; white, white matter) by real-time quantitative PCR. Results are presented as the fold change in gene expression normalized to the internal control 18S rRNA (mean and standard deviation; n.d., not detectable).
Figure 2
Figure 2
3-hydroxybutyrate protects neonatal rat hippocampal neurons from cell death induced by glucose deprivation. Neonatal rat hippocampal neurons (A) or LNT-229 glioma cells (B) were cultured at different glucose concentrations in the absence (control) or presence of 3-hydroxybutyrate (3OHB, 5 mM). MTT reduction was determined 120 h (hippocampal neurons) or 72 h (LNT-229) after exposure (mean and standard deviation, ** p < 0.01). (C) Glioma cells were grown in medium containing 0 mM, 1 mM, 2.5 mM, 5 mM, 10 mM or 25 mM glucose, supplemented with 3-hydroxybutyrate (3OHB, 5 mM) or not. Cell density was assessed by crystal violet staining at day 1, 2, 3, 4, 6 and 8 after exposure, as shown here for LNT-229 cells (mean and standard deviation). (D) Primary rat astrocytes were treated similarly and crystal violet staining was performed at day 2, 4, 6, 8, 10 and 12 (mean and standard deviation). For a clearer arrangement, 10 mM and 25 mM glucose conditions, showing no difference in cell density between control and 3-hydroxybutyrate supplementation, are not displayed.
Figure 3
Figure 3
Influence of hypoxia and 3-hydroxybutyrate on the expression of ketone body metabolizing enzymes and the activity of HIF-1α signaling. (A) LNT-229 glioma cells were cultured in the absence or presence of 3-hydroxybutyrate (3OHB, 5 mM) at 21%, 1% or 0.1% oxygen for 24 h. mRNA levels of OXCT1, ACAT1, BDH1 and BDH2 were determined by real-time quantitative PCR. Data are presented as the fold change in gene expression normalized to the internal control 18S rRNA (mean and standard deviation, p < 0.05 compared with normoxic conditions, asterisks omitted for clarity). (B) Glioma cell lines were treated as in (A), and the expression of HIF-1α, BDH1, BDH2, OXCT1 and ACAT1 was analyzed by immunoblot. (C) HIF-specific transcriptional activity was examined by luciferase reporter assay (3HRE-pTK-luc construct) in the absence or presence of 3-hydroxybutyrate (24 h treatment, mean and standard deviation). (D) Glioma cells were incubated for 24 h at the indicated oxygen conditions in the absence or presence of 3-nitropropionic acid (3NPA, 10 mM), and the expression of HIF-1α was analyzed by immunoblot.
Figure 4
Figure 4
The presence of 3-hydroxybutyrate does not modify the sensitivity of LNT-229 cells to inhibitors of oxidative phosphorylation, glycolysis, TRAIL or temozolomide. LNT-229 cells (mean and standard deviation) were treated with increasing concentrations of (A) rotenone (48 h), (B) 3-bromopyruvate (150 min) or (C) TRAIL (24 h). In the 3-bromopyruvate experiments, cells were preincubated in medium containing 3-hydroxybutyrate (3OHB, 5 mM) or not. Cell density was evaluated by crystal violet staining (A, B) or MTT reduction (C). (D) LNT-229 cells were exposed to temozolomide for 24 h, followed by further observation in drug-free medium supplemented with 3-hydroxybutyrate (3OHB, 5 mM) or not, and clonogenic survival was analyzed (mean and standard deviation).
Figure 5
Figure 5
Ketogenic diet induces ketosis but does not lower blood glucose levels. LNT-229 cells were implanted into the right striatum of nude mice at day 0. Thereafter, animals were fed either the standard diet or the ketogenic diet. (A) Body weight was measured twice weekly and is presented as mean and standard deviation. (B) Blood levels of 3-hydroxybutyrate and glucose were determined on the day of tumor cell implantation (day 0) and every 7 days thereafter. 3-hydroxybutyrate values in mice fed the ketogenic diet were significantly higher than those in the control group (Bonferroni-adjusted p < 0.05 at all time points after diet change). By contrast, glucose levels did not differ significantly between diet groups. Boxplots depict the median, quartiles and extreme values. Upper and lower whiskers correspond to the highest and lowest values which are not greater than 1.5 times the interquartile range; •, cases with values between 1.5 and 3 times the interquartile range; *, cases with values more than 3 times the interquartile range.
Figure 6
Figure 6
Ketogenic diet fed ad libitum does not prolong survival in the LNT-229 xenograft model. (A) Mice carrying LNT-229 xenografts were fed with ketogenic or control diet, observed in daily intervals and killed at the onset of neurological symptoms equal or worse than grade 2 (Kaplan-Meier survival estimate, Mantel-Cox log-rank p = 0.288). On days 37 and 65, magnetic resonance imaging of three randomly chosen animals from each group was performed. Representative images (day 65) are depicted. (B) Tumors of mice fed the ketogenic diet displayed proliferation (Ki-67 labeling) indices similar to those of control animals (mean and standard error of the mean, Student's t-test p = 0.637).
Figure 7
Figure 7
Metabolic mapping does not reveal significant differences between the two diet groups. Adjacent cryosections were used for hematoxylin-eosin staining (D) and for bioluminescence imaging of ATP (A), glucose (B) and lactate (C). Concentration distributions of these metabolites are color-coded [μmol/g].

References

    1. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lutolf UM, Kleihues P. Genetic pathways to glioblastoma: a population-based study. Cancer Res. 2004;64:6892–6899. doi: 10.1158/0008-5472.CAN-04-1337.
    1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–996. doi: 10.1056/NEJMoa043330.
    1. Warburg O. On the origin of cancer cells. Science. 1956;123:309–314. doi: 10.1126/science.123.3191.309.
    1. Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47. doi: 10.1038/nrc704.
    1. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–899. doi: 10.1038/nrc1478.
    1. Morris AA. Cerebral ketone body metabolism. J Inherit Metab Dis. 2005;28:109–121. doi: 10.1007/s10545-005-5518-0.
    1. Cahill GF, Veech RL. Ketoacids? Good medicine? Trans Am Clin Climatol Assoc. 2003;114:149–161. discussion 162-143.
    1. Bough KJ, Rho JM. Anticonvulsant mechanisms of the ketogenic diet. Epilepsia. 2007;48:43–58.
    1. Meixensberger J, Herting B, Roggendorf W, Reichmann H. Metabolic patterns in malignant gliomas. J Neurooncol. 1995;24:153–161. doi: 10.1007/BF01078485.
    1. Oudard S, Boitier E, Miccoli L, Rousset S, Dutrillaux B, Poupon MF. Gliomas are driven by glycolysis: putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure. Anticancer Res. 1997;17:1903–1911.
    1. Kiebish MA, Han X, Cheng H, Seyfried TN. In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumours. ASN Neuro. 2009;1
    1. Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev. 2009;59:293–315. doi: 10.1016/j.brainresrev.2008.09.002.
    1. Prins ML. Cerebral metabolic adaptation and ketone metabolism after brain injury. J Cereb Blood Flow Metab. 2008;28:1–16. doi: 10.1038/sj.jcbfm.9600543.
    1. Tisdale MJ, Brennan RA. Loss of acetoacetate coenzyme A transferase activity in tumours of peripheral tissues. Br J Cancer. 1983;47:293–297. doi: 10.1038/bjc.1983.38.
    1. Fredericks M, Ramsey RB. 3-Oxo acid coenzyme A transferase activity in brain and tumors of the nervous system. J Neurochem. 1978;31:1529–1531. doi: 10.1111/j.1471-4159.1978.tb06581.x.
    1. Nebeling LC, Miraldi F, Shurin SB, Lerner E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr. 1995;14:202–208.
    1. Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer. 2003;89:1375–1382. doi: 10.1038/sj.bjc.6601269.
    1. Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG, Seyfried TN. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (Lond) 2007;4:5. doi: 10.1186/1743-7075-4-5.
    1. Rieger J, Baehr O, Hattingen E, Maurer G, Coy J, Weller M, Steinbach J. The ERGO trial: A pilot study of a ketogenic diet in patients with recurrent glioblastoma. J Clin Oncol (Meeting Abstracts) 2010;28:e12532.
    1. Richard DE, Berra E, Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem. 2000;275:26765–26771.
    1. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11:72–82. doi: 10.1101/gad.11.1.72.
    1. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12:5447–5454.
    1. Wischhusen J, Naumann U, Ohgaki H, Rastinejad F, Weller M. CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene. 2003;22:8233–8245. doi: 10.1038/sj.onc.1207198.
    1. Krohn AJ, Preis E, Prehn JH. Staurosporine-induced apoptosis of cultured rat hippocampal neurons involves caspase-1-like proteases as upstream initiators and increased production of superoxide as a main downstream effector. J Neurosci. 1998;18:8186–8197.
    1. Hamprecht B, Loffler F. Primary glial cultures as a model for studying hormone action. Methods Enzymol. 1985;109:341–345.
    1. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4.
    1. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–2319. doi: 10.1038/nprot.2006.339.
    1. Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem. 2006;281:9030–9037.
    1. Dyer BW, Ferrer FA, Klinedinst DK, Rodriguez R. A noncommercial dual luciferase enzyme assay system for reporter gene analysis. Anal Biochem. 2000;282:158–161. doi: 10.1006/abio.2000.4605.
    1. Albini A, Benelli R. The chemoinvasion assay: a method to assess tumor and endothelial cell invasion and its modulation. Nat Protoc. 2007;2:504–511. doi: 10.1038/nprot.2006.466.
    1. Otto C, Kaemmerer U, Illert B, Muehling B, Pfetzer N, Wittig R, Voelker HU, Thiede A, Coy JF. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer. 2008;8:122. doi: 10.1186/1471-2407-8-122.
    1. Walenta S, Schroeder T, Mueller-Klieser W. Metabolic mapping with bioluminescence: basic and clinical relevance. Biomol Eng. 2002;18:249–262. doi: 10.1016/S1389-0344(01)00107-1.
    1. Mueller-Klieser W, Walenta S. Geographical mapping of metabolites in biological tissue with quantitative bioluminescence and single photon imaging. Histochem J. 1993;25:407–420. doi: 10.1007/BF00157805.
    1. Webb JL. In: Enzymes and metabolic inhibitors. Webb JL, editor. Vol. 1. New York: Academic Press; 1963. Effects of more than one inhibitor; pp. 487–512.
    1. Favaro E, Nardo G, Persano L, Masiero M, Moserle L, Zamarchi R, Rossi E, Esposito G, Plebani M, Sattler U, Mann T, Mueller-Klieser W, Ciminale V, Amadori A, Indraccolo S. Hypoxia inducible factor-1alpha inactivation unveils a link between tumor cell metabolism and hypoxia-induced cell death. Am J Pathol. 2008;173:1186–1201. doi: 10.2353/ajpath.2008.071183.
    1. Malhotra R, Brosius FC. Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem. 1999;274:12567–12575. doi: 10.1074/jbc.274.18.12567.
    1. Steinbach JP, Wolburg H, Klumpp A, Probst H, Weller M. Hypoxia-induced cell death in human malignant glioma cells: energy deprivation promotes decoupling of mitochondrial cytochrome c release from caspase processing and necrotic cell death. Cell Death Differ. 2003;10:823–832. doi: 10.1038/sj.cdd.4401252.
    1. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM. p53 regulates mitochondrial respiration. Science. 2006;312:1650–1653. doi: 10.1126/science.1126863.
    1. Beppu T, Kamada K, Yoshida Y, Arai H, Ogasawara K, Ogawa A. Change of oxygen pressure in glioblastoma tissue under various conditions. J Neurooncol. 2002;58:47–52. doi: 10.1023/A:1015832726054.
    1. Cerniglia GJ, Wilson DF, Pawlowski M, Vinogradov S, Biaglow J. Intravascular oxygen distribution in subcutaneous 9L tumors and radiation sensitivity. J Appl Physiol. 1997;82:1939–1945.
    1. Scigliano S, Pinel S, Poussier S, Fouyssac F, Plenat F, Karcher G, Chastagner P. Measurement of hypoxia using invasive oxygen-sensitive electrode, pimonidazole binding and 18F-FDG uptake in anaemic or erythropoietin-treated mice bearing human glioma xenografts. Int J Oncol. 2008;32:69–77.
    1. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7:77–85. doi: 10.1016/j.ccr.2004.11.022.
    1. Roslin M, Henriksson R, Bergstrom P, Ungerstedt U, Bergenheim AT. Baseline levels of glucose metabolites, glutamate and glycerol in malignant glioma assessed by stereotactic microdialysis. J Neurooncol. 2003;61:151–160. doi: 10.1023/A:1022106910017.
    1. Marcus HJ, Carpenter KL, Price SJ, Hutchinson PJ. In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J Neurooncol. 2009;97:11–23.
    1. Tennant DA, Duran RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 2010;10:267–277. doi: 10.1038/nrc2817.
    1. Seyfried TN, Kiebish MA, Marsh J, Shelton LM, Huysentruyt LC, Mukherjee P. Metabolic management of brain cancer. Biochim Biophys Acta. 2010.
    1. Meredith D, Christian HC. The SLC16 monocaboxylate transporter family. Xenobiotica. 2008;38:1072–1106. doi: 10.1080/00498250802010868.
    1. Tildon JT, McKenna MC, Stevenson JH Jr. Transport of 3-hydroxybutyrate by cultured rat brain astrocytes. Neurochem Res. 1994;19:1237–1242. doi: 10.1007/BF01006812.
    1. Page MA, Williamson DH. Enzymes of ketone-body utilisation in human brain. Lancet. 1971;2:66–68.
    1. Samoilova M, Weisspapir M, Abdelmalik P, Velumian AA, Carlen PL. Chronic in vitro ketosis is neuroprotective but not anti-convulsant. J Neurochem. 2010;113:826–835. doi: 10.1111/j.1471-4159.2010.06645.x.
    1. Nehlig A. Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fatty Acids. 2004;70:265–275. doi: 10.1016/j.plefa.2003.07.006.
    1. DeVivo DC, Leckie MP, Ferrendelli JS, McDougal DB Jr. Chronic ketosis and cerebral metabolism. Ann Neurol. 1978;3:331–337. doi: 10.1002/ana.410030410.
    1. Zhao Z, Lange DJ, Voustianiouk A, MacGrogan D, Ho L, Suh J, Humala N, Thiyagarajan M, Wang J, Pasinetti GM. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci. 2006;7:29. doi: 10.1186/1471-2202-7-29.
    1. Imamura K, Takeshima T, Kashiwaya Y, Nakaso K, Nakashima K. D-beta-hydroxybutyrate protects dopaminergic SH-SY5Y cells in a rotenone model of Parkinson's disease. J Neurosci Res. 2006;84:1376–1384. doi: 10.1002/jnr.21021.
    1. Skinner R, Trujillo A, Ma X, Beierle EA. Ketone bodies inhibit the viability of human neuroblastoma cells. J Pediatr Surg. 2009;44:212–216. doi: 10.1016/j.jpedsurg.2008.10.042. discussion 216.
    1. Puchowicz MA, Zechel JL, Valerio J, Emancipator DS, Xu K, Pundik S, LaManna JC, Lust WD. Neuroprotection in diet-induced ketotic rat brain after focal ischemia. J Cereb Blood Flow Metab. 2008;28:1907–1916. doi: 10.1038/jcbfm.2008.79.
    1. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–732. doi: 10.1038/nrc1187.
    1. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol. 2005;7:134–153. doi: 10.1215/S1152851704001115.
    1. Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 2010;9:3506–3514. doi: 10.4161/cc.9.17.12731.
    1. Froberg MK, Gerhart DZ, Enerson BE, Manivel C, Guzman-Paz M, Seacotte N, Drewes LR. Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues. Neuroreport. 2001;12:761–765. doi: 10.1097/00001756-200103260-00030.
    1. Chechik T, Roeder LM, Tildon JT, Poduslo SE. Ketone body enzyme activities in purified neurons, astrocytes and oligodendroglia. Neurochem Int. 1987;10:95–99. doi: 10.1016/0197-0186(87)90179-3.
    1. Edmond J, Robbins RA, Bergstrom JD, Cole RA, de Vellis J. Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res. 1987;18:551–561. doi: 10.1002/jnr.490180407.
    1. Lopes-Cardozo M, Larsson OM, Schousboe A. Acetoacetate and glucose as lipid precursors and energy substrates in primary cultures of astrocytes and neurons from mouse cerebral cortex. J Neurochem. 1986;46:773–778. doi: 10.1111/j.1471-4159.1986.tb13039.x.
    1. Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330:1340–1344. doi: 10.1126/science.1193494.
    1. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007;104:19345–19350. doi: 10.1073/pnas.0709747104.
    1. Arismendi-Morillo GJ, Castellano-Ramirez AV. Ultrastructural mitochondrial pathology in human astrocytic tumors: potentials implications pro-therapeutics strategies. J Electron Microsc (Tokyo) 2008;57:33–39.
    1. Kirches E, Krause G, Warich-Kirches M, Weis S, Schneider T, Meyer-Puttlitz B, Mawrin C, Dietzmann K. High frequency of mitochondrial DNA mutations in glioblastoma multiforme identified by direct sequence comparison to blood samples. Int J Cancer. 2001;93:534–538. doi: 10.1002/ijc.1375.
    1. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, Maguire C, Gammer TL, Mackey JR, Fulton D, Abdulkarim B, McMurtry MS, Petruk KC. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med. 2010;2:31ra34.
    1. Freedland SJ, Mavropoulos J, Wang A, Darshan M, Demark-Wahnefried W, Aronson WJ, Cohen P, Hwang D, Peterson B, Fields T, Pizzo SV, Isaacs WB. Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis. Prostate. 2008;68:11–19. doi: 10.1002/pros.20683.
    1. Spulber G, Spulber S, Hagenas L, Amark P, Dahlin M. Growth dependence on insulin-like growth factor-1 during the ketogenic diet. Epilepsia. 2009;50:297–303. doi: 10.1111/j.1528-1167.2008.01769.x.
    1. Stafford P, Abdelwahab MG, Kim do Y, Preul MC, Rho JM, Scheck AC. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr Metab (Lond) 2010;7:74. doi: 10.1186/1743-7075-7-74.
    1. Newcomb EW, Zagzag D. In: CNS cancer: models, markers, prognostic factors, targets, and therapeutic approaches. Van Meir EG, editor. New York: Springer; 2009. The murine GL261 glioma experimental model to assess novel brain tumor treatments; pp. 227–242.
    1. Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, Miletic H, Wang J, Stieber D, Stuhr L, Moen I, Rygh CB, Bjerkvig R, Niclou SP. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA. 2011;108:3749–3754. doi: 10.1073/pnas.1014480108.

Source: PubMed

3
구독하다