Effects of Non-Starch Polysaccharides on Inflammatory Bowel Disease

Ying Nie, Qinlu Lin, Feijun Luo, Ying Nie, Qinlu Lin, Feijun Luo

Abstract

The incidence of inflammatory bowel disease (IBD) has increased considerably over the past few decades. In the present review, we discuss several disadvantages existing in the treatment of IBD and current understandings of the structures, sources, and natures of various kinds of non-starch polysaccharides (NSPs). Available evidences for the use of different sources of NSPs in IBD treatment both in vitro and in vivo are analyzed, including glucan from oat bran, mushroom, seaweed, pectin, gum, prebiotics, etc. Their potential mechanisms, especially their related molecular mechanism of protective action in the treatment and prevention of IBD, are also summarized, covering the anti-inflammation, immune-stimulating, and gut microbiota-modulating activities, as well as short-chain fatty acids (SCFAs) production, anti-oxidative stress accompanied with inflammation, the promotion of gastric epithelial cell proliferation and tissue healing, and the reduction of the absorption of toxins of NSPs, thus ameliorating the symptoms and reducing the reoccurrence rate of IBD. In summary, NSPs exhibit the potential to be promising agents for an adjuvant therapy and for the prevention of IBD. Further investigating of the crosstalk between immune cells, epithelial cells, and gut microorganisms in addition to evaluating the effects of different kinds and different molecular weights of NSPs will lead to well-designed clinical intervention trials and eventually improve the treatment and prevention of IBD.

Keywords: SCFAs; gut microbiota; immune system; inflammatory bowel disease (IBD); intervention; mechanism; non-starch polysaccharide (NSP); pro-inflammatory cytokines.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Structures of typical non-starch polysaccharides.
Figure 2
Figure 2
The possible positive effects of different NSPs on IBD patients. NSP: non-starch polysaccharide; IBD: inflammatory bowel disease; SCFAs: short chain fatty acids.
Figure 3
Figure 3
The possible molecular mechanisms of NSPs affecting IBD. NSP: non-starch polysaccharide; ROS: reactive oxygen species; SCFAs: →short chain fatty acids; SOD: superoxide dismutase; “↑”: represent “increase”; “↓”: represent “decrease”; “?”: represent “possible or unsure”.

References

    1. Kemp R., Dunn E., Schultz M. Immunomodulators in inflammatory bowel disease: An emerging role for biologic agents. BioDrugs. 2013;27:585–590. doi: 10.1007/s40259-013-0045-2.
    1. Nguyen G.C., Chong C.A., Chong R.Y. National estimates of the burden of inflammatory bowel disease among racial and ethnic groups in the United States. J. Crohns Colitis. 2014;8:288–295. doi: 10.1016/j.crohns.2013.09.001.
    1. Molodecky N.A., Rabi D.M., Ghali W.A., Ferris M., Chernoff G., Benchimol E.I., Panaccione R., Ghosh S., Barkema H.W., Kaplan G.G. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54. doi: 10.1053/j.gastro.2011.10.001.
    1. Baumgart D.C., Sandborn W.J. Inflammatory bowel disease: Clinical aspects and established and evolving therapies. Lancet. 2007;369:1641–1657. doi: 10.1016/S0140-6736(07)60751-X.
    1. Lim W.C., Wang Y., MacDonald J.K., Hanauer S. Aminosalicylates for induction of remission or response in Crohn’s disease. Cochrane Database Syst. Rev. 2016;7 doi: 10.1002/14651858.
    1. Sullivan P.W., Ghushchyan V.H., Globe G., Schatz M. Oral corticosteroid exposure and adverse effects in asthmatic patients. J. Allergy Clin. Immunol. 2017 doi: 10.1016/j.jaci.2017.04.009.
    1. Bryant R.V., Brain O., Travis S.P. Conventional drug therapy for inflammatory bowel disease. Scand. J. Gastroenterol. 2015;50:90–112. doi: 10.3109/00365521.2014.968864.
    1. Neuman M.G., Nanau R.M. Inflammatory bowel disease: Role of diet, microbiota, life style. Transl. Res. 2012;160:29–44. doi: 10.1016/j.trsl.2011.09.001.
    1. Belalcazar L.M., Anderson A.M., Lang W., Schwenke D.C., Haffner S.M., Yatsuya H., Rushing J., Vitolins M.Z., Reeves R., Pi-Sunyer F.X., et al. Fiber intake and plasminogen activator inhibitor-1 in type 2 diabetes: Look AHEAD (Action for Health in Diabetes) trial findings at baseline and year 1. J. Acad. Nutr. Diet. 2014;114:1800–1810. doi: 10.1016/j.jand.2014.06.357.
    1. Lattimer J.M., Haub M.D. Effects of dietary fiber and its components on metabolic health. Nutrients. 2010;2:1266–1289. doi: 10.3390/nu2121266.
    1. Montagne L., Pluske J.R., Hampson D.J. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Tech. 2003;108:95–117. doi: 10.1016/S0377-8401(03)00163-9.
    1. Mendis M., Leclerc E., Simsek S. Arabinoxylans, gut microbiota and immunity. Carbohyd. Polym. 2016;139:159–166. doi: 10.1016/j.carbpol.2015.11.068.
    1. Huang X., Nie S. The structure of mushroom polysaccharides and their beneficial role in health. Food Funct. 2015;6:3205–3217. doi: 10.1039/C5FO00678C.
    1. Bobadilla F., Rodriguez-Tirado C., Imarai M., Galotto M.J., Andersson R. Soluble β-1,3/1,6-glucan in seaweed from the southern hemisphere and its immunomodulatory effect. Carbonhyd. Polym. 2013;92:241–248. doi: 10.1016/j.carbpol.2012.09.071.
    1. Schwartz B., Hadar Y. Possible mechanisms of action of mushroom-derived glucan on inflammatory bowel disease and associated cancer. Ann. Transl. Med. 2014;2:19.
    1. Asp N.-G. Dietary fibre- definition, chemistry and analytical determination. Mol. Asp. Med. 1986;9:17–29. doi: 10.1016/0098-2997(87)90014-8.
    1. Lovegrove A., Edwards C.H., de Noni I., Patel H., El S.N., Grassby T., Zielke C., Ulmius M., Nilsson L., Butterworth P.J., et al. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food. Sci. Nutr. 2017;57:237–253. doi: 10.1080/10408398.2014.939263.
    1. Galvez J., Rodriguez-Cabezas M.E., Zarzuelo A. Effects of dietary fiber on inflammatory bowel disease. Mol. Nutr. Food Res. 2005;49:601–608. doi: 10.1002/mnfr.200500013.
    1. Raninen K., Lappi J., Mykkanen H., Poutanen K. Dietary fiber type reflects physiological functionality: Comparison of grain fiber, inulin, and polydextrose. Nutr. Rev. 2011;69:9–21. doi: 10.1111/j.1753-4887.2010.00358.x.
    1. Zeng H., Lazarova D.L., Bordonaro M. Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World J. Gastrointest. Oncol. 2014;6:41–51. doi: 10.4251/wjgo.v6.i2.41.
    1. Davies P.S., Rhodes J. Maintenance of remission in ulcerative colitis with sulphasalazine or a high-fibre diet: A clinical trial. Br. Med. J. 1978;1:1524–1525. doi: 10.1136/bmj.1.6126.1524.
    1. Hallert C., Nyman M., Pousette A., Granno C., Svensson H. Increasing fecal butyrate in ulcerative colitis patients by diet: Controlled pilot study. Inflamm. Bowel. Dis. 2003;9:116–121. doi: 10.1097/00054725-200303000-00005.
    1. Suchecka D., Harasym J.P., Wilczak J., Gajewska M., Oczkowski M., Gudej S., Błaszczyk K., Kamola D., Filip R., Gromadzka-Ostrowska J. Antioxidative and anti-inflammatory effects of high β-glucan concentration purified aqueous extract from oat in experimental model of LPS-induced chronic enteritis. J. Func. Foods. 2015;14:244–254. doi: 10.1016/j.jff.2014.12.019.
    1. Liu B., Lin Q., Yang T., Zeng L., Shi L., Chen Y., Luo F. Oat β-glucan ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Food Funct. 2015;6:3454–3463. doi: 10.1039/C5FO00563A.
    1. Thies F., Masson L.F., Boffetta P., Kris-Etherton P. Oats and bowel disease: A systematic literature review. Br. J. Nutr. 2014;112:S31–S43. doi: 10.1017/S0007114514002293.
    1. Forland D.T., Saetre L., Lyberg T., Lygren I., Hetland G. Effect of an extract based on the medicinal mushroom Agaricus blazei Murill on expression of cytokines and calprotectin in patients with ulcerative colitis and Crohn’s disease. Scand. J. Immunol. 2011;73:66–75. doi: 10.1111/j.1365-3083.2010.02477.x.
    1. Mojgan N., Reynolds P.D., Baumgartner A., Jerwoodc D., Andersona D. Chaga mushroom extract inhibits oxidative DNA damage in lymphocytes of patients with inflammatory bowel disease. BioFactors. 2007;31:191–200.
    1. Therkelsen S.P., Hetland G., Lyberg T., Lygren I., Johnson E. Cytokine Levels After Consumption of a Medicinal Agaricus blazei Murill-Based Mushroom Extract, AndoSan, in Patients with Crohn’s Disease and Ulcerative Colitis in a Randomized Single-Blinded Placebo-Controlled Study. Scand. J. Immunol. 2016;84:323–331. doi: 10.1111/sji.12476.
    1. Shi L., Lin Q., Yang T., Nie Y., Li X., Liu B., Shen J., Liang Y., Tang Y., Luo F. Oral administration of Lentinus edodes β-glucan ameliorates DSS-induced ulcerative colitis in mice via MAPK-Elk-1 and MAPK-PPARgamma pathways. Food Funct. 2016;7:4614–4627. doi: 10.1039/C6FO01043A.
    1. Lavi I., Levinson D., Peri I., Nimri L., Hadar Y., Schwartz B. Orally administered glucan from the edible mushroom Pleurotus pulmonarius reduce acute inflammation in dextran sulfate sodium-induced experimental colitis. Br. J. Nutr. 2010;103:393–402. doi: 10.1017/S0007114509991760.
    1. Takashi O., Rie K., Yuji N., Itsuko F., Takashi H., Kazuki K., Masashi M., Hitoshi A. Lentinan fromshiitake mushroom (Lentinus edodes) suppresses expression of cytochrome P450 1A subfamily in the mouse liver. BioFactors. 2004;21:407–409.
    1. Xie J.T., Wang C.Z., Wicks S., Yin J.J., Kong J., Li J., Li Y.C., Yuan C.S. Ganoderma lucidum extract inhibits proliferation of SW 480 human colorectal cancer cells. Exp. Oncol. 2006;28:25–29.
    1. Lavi I., Friesem D., Geresh S., Hadar Y., Schwartz B. An aqueous polysaccharide extract from the edible mushroom Pleurotus ostreatus induces anti-proliferative and pro-apoptotic effects on HT-29 colon cancer cells. Cancer Lett. 2006;244:61–70. doi: 10.1016/j.canlet.2005.12.007.
    1. Shanmugam M.K., Kannaiyan R., Sethi G. Targeting cell signaling and apoptotic pathways by dietary agents: Role in the prevention and treatment of cancer. Nutr. Cancer. 2011;63:161–173. doi: 10.1080/01635581.2011.523502.
    1. Hu H., Zhang Z., Lei Z., Yang Y., Sugiura N. Comparative study of antioxidant activity and antiproliferative effect of hot water and ethanol extracts from the mushroom Inonotus obliquus. J. Biosci. Bioeng. 2009;107:42–48. doi: 10.1016/j.jbiosc.2008.09.004.
    1. Ryan M.T., O’shea C.J., Collins C.B., O’Doherty J.V., Sweeney T. Effects of dietary supplementation with Laminaria hyperborea, Laminaria digitata, and Saccharomyces cerevisiae on the IL-17 pathway in the porcine colon. J. Anim. Sci. 2012;30:263–265. doi: 10.2527/jas.53802.
    1. O’Shea C.J., O’Doherty J.V., Callanan J.J., Doyle D., Thornton K., Sweeney T. The effect of algal polysaccharides laminarin and fucoidan on colonic pathology, cytokine gene expression and Enterobacteriaceae in a dextran sodium sulfate-challenged porcine model. J. Nutr. Sci. 2016;5:e15. doi: 10.1017/jns.2016.4.
    1. Lee K.H., Park M., Ji K.Y., Lee H.Y., Jang J.H., Yoon I.J., Oh S.S., Kim S.M., Jeong Y.H., Yun C.H., et al. Bacterial β-(1,3)-glucan prevents DSS-induced IBD by restoring the reduced population of regulatory T cells. Immunobiology. 2014;219:802–812. doi: 10.1016/j.imbio.2014.07.003.
    1. Jin M., Zhao K., Huang Q., Xu C., Shang P. Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: A review. Carbohyd. Polym. 2012;89:713–722. doi: 10.1016/j.carbpol.2012.04.049.
    1. Rychlik A., Nieradka R., Kander M., Nowicki M., Wdowiak M., Kolodziejska-Sawerska A. The effectiveness of natural and synthetic immunomodulators in the treatment of inflammatory bowel disease in dogs. Acta. Vet. Hung. 2013;61:297–308. doi: 10.1556/AVet.2013.015.
    1. Vo T.-S., Kim S.-K. Fucoidans as a natural bioactive ingredient for functional foods. J. Func. Foods. 2013;5:16–27. doi: 10.1016/j.jff.2012.08.007.
    1. Lean Q.Y., Eri R.D., Fitton J.H., Patel R.P., Gueven N. Fucoidan Extracts Ameliorate Acute Colitis. PLoS ONE. 2015;10:e0128453. doi: 10.1371/journal.pone.0128453.
    1. Kim M.J., Chang U.J., Lee J.S. Inhibitory effects of Fucoidan in 3T3-L1 adipocyte differentiation. Mar. Biotechnol. 2009;11:557–562. doi: 10.1007/s10126-008-9170-1.
    1. Kim K.-J., Lee B.-Y. Fucoidan from the sporophyll of Undaria pinnatifida suppresses adipocyte differentiation by inhibition of inflammation-related cytokines in 3T3-L1 cells. Nutr. Res. 2012;32:439–447. doi: 10.1016/j.nutres.2012.04.003.
    1. Fernandez F., Sanchez-Lombrana J.L., Navarro E., Hinojosa J., Gassull M.A. Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Am. J. Gastroenterol. 1999;94:427–433. doi: 10.1111/j.1572-0241.1999.872_a.x.
    1. Rodríguez-Cabezas M.E., Gálvez J., Camuesco D., Lorente M.D., Concha A., Martinez-Augustin O., Redondo L., Zarzuelo A. Intestinal anti-inflammatory activity of dietary fiber (Plantago ovata seeds) in HLA-B27 transgenic rats. Clin. Nutr. 2003;22:463–471. doi: 10.1016/S0261-5614(03)00045-1.
    1. Rodriguez-Cabezas M.E., Galvez J., Lorente M.D., Concha A., Camuesco D., Azzouz S., Osuna A., Redondo L., Zarzuelo A. Dietary fiber down-regulates colonic tumor necrosis factor α and nitric oxide production in trinitrobenzenesulfonic acid-induced colitic rats. J. Nutr. 2002;132:3263–3271.
    1. Kanauchi O., Mitsuyama K., Homma T., Takahama K., Fujiyama Y., Tomiyasu N., Toyonaga A., Fukuda M., Kojima A., Bamba T. Treatment of ulcerative colitis patients by long-term administration of germinated barley foodstuff: Multi-center open trial. Int. J. Mol. Med. 2003;12:701–704. doi: 10.3892/ijmm.12.5.701.
    1. Neyrinck A.M., Possemiers S., Druart C., van de Wiele T., de Backer F., Cani P.D., Larondelle Y., Delzenne N.M. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS ONE. 2011;6:e20944. doi: 10.1371/journal.pone.0020944.
    1. James S.L., Christophersen C.T., Bird A.R., Conlon M.A., Rosella O., Gibson P.R., Muir J.G. Abnormal fibre usage in UC in remission. Gut. 2015;64:562–570. doi: 10.1136/gutjnl-2014-307198.
    1. Cani P.D., Amar J., Iglesias M.A., Poggi M., Knauf C., Bastelica D., Neyrinck A.M., Fava F., Tuohy K.M., Chabo C., et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772. doi: 10.2337/db06-1491.
    1. Chen M.H., Swanson K.S., Fahey G.C., Jr., Dien B.S., Beloshapka A.N., Bauer L.L., Rausch K.D., Tumbleson M.E., Singh V. In vitro Fermentation of Xylooligosaccharides Produced from Miscanthus x giganteus by Human Fecal Microbiota. J. Agric. Food Chem. 2016;64:262–267. doi: 10.1021/acs.jafc.5b04618.
    1. Ng S.C., Plamondon S., Kamm M.A., Hart A.L., Al-Hassi H.O., Guenther T., Stagg A.J., Knight S.C. Immunosuppressive effects via human intestinal dendritic cells of probiotic bacteria and steroids in the treatment of acute ulcerative colitis. Inflamm. Bowel Dis. 2010;16:1286–1298. doi: 10.1002/ibd.21222.
    1. Segarra S., Martinez-Subiela S., Cerda-Cuellar M., Martinez-Puig D., Munoz-Prieto A., Rodriguez-Franco F., Rodriguez-Bertos A., Allenspach K., Velasco A., Ceron J. Oral chondroitin sulfate and prebiotics for the treatment of canine Inflammatory Bowel Disease: A randomized, controlled clinical trial. BMC Vet. Res. 2016;12:49. doi: 10.1186/s12917-016-0676-x.
    1. Whorwell P.J., Altringer L., Morel J., Bond Y., Charbonneau D., O’Mahony L., Kiely B., Shanahan F., Quigley E.M. Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am. J. Gastroenterol. 2006;101:1581–1590. doi: 10.1111/j.1572-0241.2006.00734.x.
    1. O’Mahony L., McCarthy J., Kelly P., Hurley G., Luo F., Chen K., O’Sullivan G.C., Kiely B., Collins J.K., Shanahan F., et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: Symptom responses and relationship to cytokine profiles. Gastroenterology. 2005;128:541–551. doi: 10.1053/j.gastro.2004.11.050.
    1. Silk D.B., Davis A., Vulevic J., Tzortzis G., Gibson G.R. Clinical trial: The effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment. Pharmacol. Ther. 2009;29:508–518. doi: 10.1111/j.1365-2036.2008.03911.x.
    1. Takagi T., Naito Y., Higashimura Y., Ushiroda C., Mizushima K., Ohashi Y., Yasukawa Z., Ozeki M., Tokunaga M., Okubo T., et al. Partially hydrolysed guar gum ameliorates murine intestinal inflammation in association with modulating luminal microbiota and SCFA. Br. J. Nutr. 2016;116:1199–1205. doi: 10.1017/S0007114516003068.
    1. Hung T.V., Suzuki T. Dietary fermentable fiber reduces intestinal barrier defects and inflammation in colitic mice. J. Nutr. 2016;146:1970–1979. doi: 10.3945/jn.116.232538.
    1. Alam N.H., Meier R., Sarker S.A., Bardhan P.K., Schneider H., Gyr N. Partially hydrolysed guar gum supplemented comminuted chicken diet in persistent diarrhea: A randomised controlled trial. Arch. Dis. Child. 2005;90:195–199. doi: 10.1136/adc.2003.040089.
    1. Tuohy K.M., Kolida S., Lustenberger A.M., Gibson G.R. The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides—A human volunteer study. Br. J. Nutr. 2007;86:341. doi: 10.1079/BJN2001394.
    1. Paul S.P., Barnard P., Edate S., Candy D.C. Stool consistency and abdominal pain in irritable bowel syndrome may be improved by partially hydrolysed guar gum. J. Pediatr. Gastroenterol. Nutr. 2011;53:582–583. doi: 10.1097/MPG.0b013e3182307c7a.
    1. Yue Y., Wu S., Li Z., Li J., Li X., Xiang J., Ding H. Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function. Food Funct. 2015;6:2568–2577. doi: 10.1039/C5FO00378D.
    1. Krylova S.G., Efimova L.A., Zueva E.P., Khotimchenko M.U., Amosova E.N., Razina T.G., Lopatina K.A., Khotimchenko U.S. Gastroprotective effect of nonstarch polysaccharide calcium pectate under experimental conditions. Bull. Exp. Biol. Med. 2008;145:731–734. doi: 10.1007/s10517-008-0192-5.
    1. Jiang L.M., Nie S.P., Zhou H.L., Huang D.F., Xie M.Y. Carboxymethylation enhances the maturation-inducing activity in dendritic cells of polysaccharide from the seeds of Plantago asiatica L. Int. Immunopharmacol. 2014;22:324–331. doi: 10.1016/j.intimp.2014.06.027.
    1. Pomin V.H. Marine non-glycosaminoglycan sulfated glycans as potential pharmaceuticals. Pharmaceuticals. 2015;8:848–864. doi: 10.3390/ph8040848.
    1. Hedin C.R., McCarthy N.E., Louis P., Farquharson F.M., McCartney S., Taylor K., Prescott N.J., Murrells T., Stagg A.J., Whelan K., et al. Altered intestinal microbiota and blood T cell phenotype are shared by patients with Crohn’s disease and their unaffected siblings. Gut. 2014;63:1578–1586. doi: 10.1136/gutjnl-2013-306226.
    1. Fiocchi C. Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology. 1998;115:182–205. doi: 10.1016/S0016-5085(98)70381-6.
    1. Xu X., Yan H., Zhang X. Structure and immuno-stimulating activities of a new heteropolysaccharide from Lentinula edodes. J. Agric. Food Chem. 2012;60:11560–11566. doi: 10.1021/jf304364c.
    1. Yang T., Jia M., Meng J., Wu H., Mei Q. Immunomodulatory activity of polysaccharide isolated from Angelica sinensis. Int. J. Biol. Macromol. 2006;39:179–184. doi: 10.1016/j.ijbiomac.2006.02.013.
    1. Brown G.D., Gordon S. Immune recognition of fungal β-glucan. Cell Microbiol. 2005;7:471–479. doi: 10.1111/j.1462-5822.2005.00505.x.
    1. Zekovic D.B., Kwiatkowski S., Vrvic M.M., Jakovljevic D., Moran C.A. Natural and modified (1→3)-β-d-glucan in health promotion and disease alleviation. Crit. Rev. Biotechnol. 2005;25:205–230. doi: 10.1080/07388550500376166.
    1. Shi S.H., Yang W.T., Huang K.Y., Jiang Y.L., Yang G.L., Wang C.F., Li Y. β-glucan from Coriolus versicolor protect mice against S. typhimurium challenge by activation of macrophages. Int. J. Biol. Macromol. 2016;86:352–361. doi: 10.1016/j.ijbiomac.2016.01.058.
    1. Berner V.K., duPre S.A., Redelman D., Hunter K.W. Microparticulate β-glucan vaccine conjugates phagocytized by dendritic cells activate both naive CD4 and CD8 T cells in vitro. Cell. Immunol. 2015;298:104–114. doi: 10.1016/j.cellimm.2015.10.007.
    1. Kang G.D., Lim S., Kim D.H. Oleanolic acid ameliorates dextran sodium sulfate-induced colitis in mice by restoring the balance of Th17/Treg cells and inhibiting NF-κB signaling pathway. Int. Immunopharmacol. 2015;29:393–400. doi: 10.1016/j.intimp.2015.10.024.
    1. Hartog A., Belle F.N., Bastiaans J., de Graaff P., Garssen J., Harthoorn L.F., Vos A.P. A potential role for regulatory T-cells in the amelioration of DSS induced colitis by dietary non-digestible polysaccharides. J. Nutr. Biochem. 2015;26:227–233. doi: 10.1016/j.jnutbio.2014.10.011.
    1. Choi E.H., Yang H.P., Chun H.S. Chitooligosaccharide ameliorates diet-induced obesity in mice and affects adipose gene expression involved in adipogenesis and inflammation. Nutr. Res. 2012;32:218–228. doi: 10.1016/j.nutres.2012.02.004.
    1. Li R., Pavuluri S., Bruggeman K., Long B.M., Parnell A.J., Martel A., Parnell S.R., Pfeffer F.M., Dennison A.J., Nicholas K.R., et al. Coassembled nanostructured bioscaffold reduces the expression of proinflammatory cytokines to induce apoptosis in epithelial cancer cells. Nanomedicine. 2016;12:1397–1407. doi: 10.1016/j.nano.2016.01.009.
    1. Nagao-Kitamoto H., Shreiner A.B., Gillilland M.G., 3rd, Kitamoto S., Ishii C., Hirayama A., Kuffa P., El-Zaatari M., Grasberger H., Seekatz A.M., et al. Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. Cell Mol. Gastroenterol. Hepatol. 2016;2:468–481. doi: 10.1016/j.jcmgh.2016.02.003.
    1. Knights D., Lassen K.G., Xavier R.J. Advances in inflammatory bowel disease pathogenesis: Linking host genetics and the microbiome. Gut. 2013;62:1505–1510. doi: 10.1136/gutjnl-2012-303954.
    1. Sghir A., Gramet G., Suau A., Rochet V., Pochart P., Dore J. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 2000;66:2263–2266. doi: 10.1128/AEM.66.5.2263-2266.2000.
    1. Stagg A.J., Hart A.L., Knight S.C., Kamm M.A. The dendritic cell: Its role in intestinal inflammation and relationship with gut bacteria. Gut. 2003;51:1522–1529. doi: 10.1136/gut.52.10.1522.
    1. Martínez-Abad B., Garrote J.A., Bernardo D., Montalvillo E., Escudero-Hernández C., Vázquez E., Rueda R., Arranz E. Differential immunomodulatory effects of Lactobacillus rhamnosus DR20, Lactobacillus fermentum CECT 5716 and Bifidobacterium animalis subsp. lactis on monocyte-derived dendritic cells. J. Funct. Foods. 2016;22:300–312. doi: 10.1016/j.jff.2016.01.033.
    1. Hart A.L., Lammers K., Brigidi P., Vitali B., Rizzello F., Gionchetti P., Campieri M., Kamm M.A., Knight S.C., Stagg A.J. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut. 2004;53:1602–1609. doi: 10.1136/gut.2003.037325.
    1. Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermudez-Humaran L.G., Gratadoux J.J., Blugeon S., Bridonneau C., Furet J.P., Corthier G., et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA. 2008;105:16731–16736. doi: 10.1073/pnas.0804812105.
    1. Wong C., Harris P.J., Ferguson L.R. Potential benefits of dietary fibre intervention in inflammatory bowel disease. Int. J. Mol. Sci. 2016;17:919. doi: 10.3390/ijms17060919.
    1. De Vrese M., Marteau P.R. Probiotics and prebiotics: Effects on diarrhea. J. Nutr. 2007;137:S803–S811.
    1. Wilson B., Whelan K. Prebiotic inulin-type fructans and galacto-oligosaccharides: Definition, specificity, function, and application in gastrointestinal disorders. J. Gastroenterol. Hepatol. 2017;32(Suppl. 1):64–68. doi: 10.1111/jgh.13700.
    1. Dewulf E.M., Cani P.D., Claus S.P., Fuentes S., Puylaert P.G., Neyrinck A.M., Bindels L.B., de Vos W.M., Gibson G.R., Thissen J.P., et al. Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013;62:1112–1121. doi: 10.1136/gutjnl-2012-303304.
    1. Hopkins M.J., Macfarlane G.T. Nondigestible Oligosaccharides Enhance Bacterial Colonization Resistance against Clostridium difficile in vitro. App. Environ. Microb. 2003;69:1920–1927. doi: 10.1128/AEM.69.4.1920-1927.2003.
    1. Hookman P. Clostridium difficile associated infection, diarrhea and colitis. World J. Gastroenterol. 2009;15:1554. doi: 10.3748/wjg.15.1554.
    1. Barbut F., Jones G., Eckert C. Epidemiology and control of Clostridium difficile infections in healthcare settings: An update. Curr. Opin. Infect. Dis. 2011;24:370–376. doi: 10.1097/QCO.0b013e32834748e5.
    1. Perrin S., Warchol M., Grill J.P., Schneider F. Fermentations of fructo-oligosaccharides and their components by Bifidobacterium infantis ATCC 15697 on batch culture in semi-synthetic medium. J. Appl. Microbiol. 2001;90:859–865. doi: 10.1046/j.1365-2672.2001.01317.x.
    1. Falony G., Vlachou A., Verbrugghe K., de Vuyst L. Cross-Feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl. Environ. Microbiol. 2006;72:7835–7841. doi: 10.1128/AEM.01296-06.
    1. Viladomiu M., Hontecillas R., Yuan L., Lu P., Bassaganya-Riera J. Nutritional protective mechanisms against gut inflammation. J. Nutr. Biochem. 2013;24:929–939. doi: 10.1016/j.jnutbio.2013.01.006.
    1. Schirmer M., Smeekens S.P., Vlamakis H., Jaeger M., Oosting M., Franzosa E.A., Jansen T., Jacobs L., Bonder M.J., Kurilshikov A., et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167:1125–1136. doi: 10.1016/j.cell.2016.10.020.
    1. Li Y., Oosting M., Smeekens S.P., Jaeger M., Aguirre-Gamboa R., Le K.T., Deelen P., Ricano-Ponce I., Schoffelen T., Jansen A.F., et al. A functional genomics approach to understand variation in cytokine production in humans. Cell. 2016;167:1099–1110. doi: 10.1016/j.cell.2016.10.017.
    1. Breuer R.I., Buto S.K., Christ M.L., Bean J., Vernia P., Paoluzi P., di Paolo M.C., Caprilli R. Rectal irrigation with short-chain fatty acids for distal ulcerative colitis. Preliminary report. Dig. Dis. Sci. 1991;36:185–187. doi: 10.1007/BF01300754.
    1. Luhrs H., Gerke T., Muller J.G., Melcher R., Schauber J., Boxberge F., Scheppach W., Menzel T. Butyrate inhibits NF-κB activation in lamina propria macrophages of patients with ulcerative colitis. Scand. J. Gastroenterol. 2002;37:458–466. doi: 10.1080/003655202317316105.
    1. Pacheco R.G., Esposito C.C., Muller L.C., Castelo-Branco M.T., Quintella L.P., Chagas V.L., de Souza H.S., Schanaider A. Use of butyrate or glutamine in enema solution reduces inflammation and fibrosis in experimental diversion colitis. World J. Gastroenterol. 2012;18:4278–4287. doi: 10.3748/wjg.v18.i32.4278.
    1. Goldsmith J.R., Sartor R.B. The role of diet on intestinal microbiota metabolism: Downstream impacts on host immune function and health, and therapeutic implications. J. Gastroenterol. 2014;49:785–798. doi: 10.1007/s00535-014-0953-z.
    1. Zimmerman M.A., Singh N., Martin P.M., Thangaraju M., Ganapathy V., Waller J.L., Shi H., Robertson K.D., Munn D.H., Liu K. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am. J. Phys. Gastrointest. Liver Phys. 2012;302:G1405–G1415. doi: 10.1152/ajpgi.00543.2011.
    1. Berni Canani R., Di Costanzo M., Leone L. The epigenetic effects of butyrate: Potential therapeutic implications for clinical practice. Clin. Epigenetics. 2012;4:4. doi: 10.1186/1868-7083-4-4.
    1. Tan J., McKenzie C., Potamitis M., Thorburn A.N., Mackay C.R., Macia L. The role of short-chain fatty acids in health and disease. Adv. Immunol. 2014;121:91–119.
    1. Brown A.J., Goldsworthy S.M., Barnes A.A., Eilert M.M., Tcheang L., Daniels D., Muir A.I., Wigglesworth M.J., Kinghorn I., Fraser N.J., et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003;278:11312–11319. doi: 10.1074/jbc.M211609200.
    1. Le Poul E., Loison C., Struyf S., Springael J.Y., Lannoy V., Decobecq M.E., Brezillon S., Dupriez V., Vassart G., van Damme J., et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 2003;278:25481–25489. doi: 10.1074/jbc.M301403200.
    1. Lu Z., Gui H., Yao L., Yan L., Martens H., Aschenbach J.R., Shen Z. Short-Chain fatty acids and acidic pH upregulate UT-B, GPR41, and GPR4 in rumen epithelial cells of goats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015;308:R283–R293. doi: 10.1152/ajpregu.00323.2014.
    1. Kamp M.E., Shim R., Nicholls A.J., Oliveira A.C., Mason L.J., Binge L., Mackay C.R., Wong C.H.G. Protein-Coupled receptor 43 modulates neutrophil recruitment during acute inflammation. PLoS ONE. 2016;11:e0163750. doi: 10.1371/journal.pone.0163750.
    1. Kelly C.J., Zheng L., Campbell E.L., Saeedi B., Scholz C.C., Bayless A.J., Wilson K.E., Glover L.E., Kominsky D.J., Magnuson A., et al. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe. 2015;17:662–671. doi: 10.1016/j.chom.2015.03.005.
    1. Gui H., Shen Z. Concentrate diet modulation of ruminal genes involved in cell proliferation and apoptosis is related to combined effects of short-chain fatty acid and pH in rumen of goats. J. Dairy Sci. 2016;99:6627–6638. doi: 10.3168/jds.2015-10446.
    1. Luceri C., Femia A.P., Fazi M., Di Martino C., Zolfanelli F., Dolara P., Tonelli F. Effect of butyrate enemas on gene expression profiles and endoscopic/histopathological scores of diverted colorectal mucosa: A randomized trial. Dig. Liver Dis. 2016;48:27–33. doi: 10.1016/j.dld.2015.09.005.
    1. Ye Y.N., Koo M.W., Li Y., Matsui H., Cho C.H. Angelica sinensis modulates migration and proliferation of gastric epithelial cells. Life Sci. 2001;68:961–968. doi: 10.1016/S0024-3205(00)00994-2.
    1. Ye Y.N., So H.L., Liu E.S., Shina V.Y., Cho C.H. Effect of polysaccharides from Angelica sinensis on gastric ulcer healing. Life Sci. 2003;72:925–932. doi: 10.1016/S0024-3205(02)02332-9.
    1. Zhao H., Luo Y., Lu C., Lin N., Xiao C., Guan S., Guo D.A., Liu Z., Ju D., He X., Lu A. Enteric mucosal immune response might trigger the immunomodulation activity of Ganoderma lucidum polysaccharide in mice. Planta Med. 2010;76:223–227. doi: 10.1055/s-0029-1186055.
    1. Deters A.M., Schröder K.R., Smiatek T., Hensel A. Ispaghula (Plantago ovata) seed husk polysaccharides promote proliferation of human epithelial cells (skin keratinocytes and fibroblasts) via enhanced growth factor receptors and energy production. Planta Med. 2005;71:33–39. doi: 10.1055/s-2005-837748.
    1. Slavin J.L., Martini M.C., Jacobs D.R.J., Marquart L. Plausible mechanisms for the protectiveness of whole grains. Am. J. Clin. Nutr. 1999;70:S459–S463.
    1. Ferguson L.R., Zhu S., Kestell P. Contrasting effects of non-starch polysaccharide and resistant starch-based diets on the disposition and excretion of the food carcinogen, 2-amino-3-methylimidazo [4,5-f]quinoline (IQ), in a rat model. Food Chem. Toxicol. 2003;41:785–792. doi: 10.1016/S0278-6915(03)00012-7.
    1. Hu Y., Martin J., Le Leu R., Young G.P. The colonic response to genotoxic carcinogens in the rat: Regulation by dietary fibre. Carcinogenesis. 2002;23:1131–1137. doi: 10.1093/carcin/23.7.1131.
    1. James J.F., Bruce E.S. Clinical gastroenterology. In: Russell D.C., editor. Inflammatory Bowel Disease Diagnosis and Therapeutics. Humana Press; Totowa, NJ, USA: 2003. pp. 33–63.
    1. Aldini R., Micucci M., Cevenini M., Fato R., Bergamini C., Nanni C., Cont M., Camborata C., Spinozzi S., Montagnani M., et al. Antiinflammatory effect of phytosterols in experimental murine colitis model: Prevention, induction, remission study. PLoS ONE. 2014;9:e108112. doi: 10.1371/journal.pone.0108112.
    1. Suchecka D., Harasym J., Wilczak J., Gromadzka-Ostrowska J. Hepato- and gastro- protective activity of purified oat 1–3, 1–4-β-d-glucan of different molecular weight. Int. J. Biol. Macromol. 2016;91:1177–1185. doi: 10.1016/j.ijbiomac.2016.06.062.
    1. Błaszczyk K., Wilczak J., Harasym J., Gudej S., Suchecka D., Królikowski T., Lange E., Gromadzka-Ostrowska J. Impact of low and high molecular weight oat β-glucan on oxidative stress and antioxidant defense in spleen of rats with LPS induced enteritis. Food Hydrocoll. 2015;51:272–280. doi: 10.1016/j.foodhyd.2015.05.025.
    1. Plantago Ovata (Psyllium) [(accessed on 5 May 2017)]; Available online: .
    1. Wang R., Sun P., Zhou Y., Zhao X. Preventive effect of Dendrobium candidum Wall. ex Lindl. on activated carbon-induced constipation in mice. Exp. Ther. Med. 2015;9:563–568. doi: 10.3892/etm.2014.2119.
    1. Varshosaz J., Jaffarian Dehkordi A., Golafshan S. Colon-Specific delivery of mesalazine chitosan microspheres. J. Microencapsul. 2008;23:329–339. doi: 10.1080/02652040600612405.
    1. Chang D., Lei J., Cui H., Lu N., Sun Y., Zhang X., Gao C., Zheng H., Yin Y. Disulfide cross-linked nanospheres from sodium alginate derivative for inflammatory bowel disease: Preparation, characterization, and in vitro drug release behavior. Carbohydr. Polym. 2012;88:663–669. doi: 10.1016/j.carbpol.2012.01.020.
    1. Desai M.S., Seekatz A.M., Koropatkin N.M., Kamada N., Hickey C.A., Wolter M., Pudlo N.A., Kitamoto S., Terrapon N., Muller A., et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167:1339–1353. doi: 10.1016/j.cell.2016.10.043.
    1. Charlebois A., Rosenfeld G., Bressler B. The impact of dietary interventions on the symptoms of inflammatory bowel disease: A systematic review. Crit. Rev. Food Sci. Nutr. 2015;56:1370–1378. doi: 10.1080/10408398.2012.760515.

Source: PubMed

3
구독하다