Active Learning Norwegian Preschool(er)s (ACTNOW) - Design of a Cluster Randomized Controlled Trial of Staff Professional Development to Promote Physical Activity, Motor Skills, and Cognition in Preschoolers

Eivind Aadland, Hege Eikeland Tjomsland, Kjersti Johannessen, Ada Kristine Ofrim Nilsen, Geir Kåre Resaland, Øyvind Glosvik, Osvald Lykkebø, Rasmus Stokke, Lars Bo Andersen, Sigmund Alfred Anderssen, Karin Allor Pfeiffer, Phillip D Tomporowski, Ingunn Størksen, John B Bartholomew, Yngvar Ommundsen, Steven James Howard, Anthony D Okely, Katrine Nyvoll Aadland, Eivind Aadland, Hege Eikeland Tjomsland, Kjersti Johannessen, Ada Kristine Ofrim Nilsen, Geir Kåre Resaland, Øyvind Glosvik, Osvald Lykkebø, Rasmus Stokke, Lars Bo Andersen, Sigmund Alfred Anderssen, Karin Allor Pfeiffer, Phillip D Tomporowski, Ingunn Størksen, John B Bartholomew, Yngvar Ommundsen, Steven James Howard, Anthony D Okely, Katrine Nyvoll Aadland

Abstract

Introduction: There is a dearth of high-quality evidence on effective, sustainable, and scalable interventions to increase physical activity (PA) and concomitant outcomes in preschoolers. Specifically, there is a need to better understand how the preschool context can be used to increase various types of physically active play to promote holistic child development. The implementation of such interventions requires highly competent preschool staffs, however, the competence in promoting PA is often low. The main aim of the ACTNOW study is therefore to investigate the effects of professional development for preschool staffs on child PA and developmental outcomes.

Methods: The study will be conducted in Norway 2019-2022 and is designed as a two-arm (intervention, control) cluster randomized controlled trial (RCT) with 7- and 18-months follow-ups. We aim to recruit 60 preschools and 1,200 3- to 5-years-old children to provide sufficient power to detect effect sizes (ESs) between 0.20 and 0.30. The intervention is nested within two levels: the preschool and the child. Central to the ACTNOW intervention are opportunities for children to engage in a variety of "enriched," meaningful, and enjoyable physically active play that supports the development of the whole child. To this end, the main intervention is a 7-month professional development/education module for preschool staff, aimed to provide them with the necessary capacity to deliver four core PA components to the children (moderate-to-vigorous PA, motor-challenging PA, cognitively engaging play, and physically active learning). We will include a range of child-level outcomes, including PA, physical fitness, adiposity, motor skills, socioemotional health, self-regulation, executive function, and learning. At the preschool level, we will describe implementation and adaptation processes using quantitative and qualitative data.

Discussion: Professional development of staff and a whole-child approach that integrates PA with cognitively engaging play and learning activities in the preschool setting may provide a feasible vehicle to enhance both physical and cognitive development in young children. ACTNOW is designed to test this hypothesis to provide a sustainable way to build human capital and provide an early solution to lifelong public health and developmental challenges.

Clinical trial registration: www.ClinicalTrials.gov identifier NCT04048967.

Keywords: child development; cognition; enriched physical activity; integration; motor competence; preschool; professional development; public health.

Copyright © 2020 Aadland, Tjomsland, Johannessen, Nilsen, Resaland, Glosvik, Lykkebø, Stokke, Andersen, Anderssen, Pfeiffer, Tomporowski, Størksen, Bartholomew, Ommundsen, Howard, Okely and Aadland.

Figures

FIGURE 1
FIGURE 1
The two-level intervention model.
FIGURE 2
FIGURE 2
The intervention model at the child level.
FIGURE 3
FIGURE 3
Flow chart of the study.

References

    1. Aadland E., Andersen L. B., Anderssen S. A., Resaland G. K., Kvalheim O. M. (2018a). Associations of volumes and patterns of physical activity with metabolic health in children: a multivariate pattern analysis approach. Prev. Med. 115 12–18. 10.1016/j.ypmed.2018.08.001
    1. Aadland E., Kvalheim O. M., Anderssen S. A., Resaland G. K., Andersen L. B. (2018b). The multivariate physical activity signature associated with metabolic health in children. Int. J. Behav. Nutr. Phys. Act. 15:77.
    1. Aadland E., Andersen L. B., Anderssen S. A., Resaland G. K., Kvalheim O. M. (2019). Accelerometer epoch setting is decisive for associations between physical activity and metabolic health in children. J. Sports Sci. 38 256–263. 10.1080/02640414.2019.1693320
    1. Adamo K. B., Wasenius N. S., Grattan K. P., Harvey A. L. J., Naylor P.-J., Barrowman N. J., et al. (2017). Effects of a preschool intervention on physical activity and body composition. J. Pediatr. 188 42–49.
    1. Alvarez-Bueno C., Pesce C., Cavero-Redondo I., Sanchez-Lopez M., Garrido-Miguel M., Martinez-Vizcaino V. (2017a). Academic achievement and physical activity: a meta-analysis. Pediatrics 140:e20171498. 10.1542/peds.2017-1498
    1. Alvarez-Bueno C., Pesce C., Cavero-Redondo I., Sanchez-Lopez M., Martinez-Hortelano J. A., Martinez-Vizcaino V. (2017b). The effect of physical activity interventions on children’s cognition and metacognition: a systematic review and meta-analysis. J. Am. Acad. Child. Adolesc. Psychiatr. 56 729–738. 10.1016/j.jaac.2017.06.012
    1. Ames C. (1992). Classrooms - goals, structures, and student motivation. J. Educ. Psychol. 84 261–271. 10.1037/0022-0663.84.3.261
    1. Archer C., Siraj I. (2017). Movement Environment Rating Scale (MOVERS) for 2-6-Year-Olds Provision. London: UCL IOE Press.
    1. Artero E. G., Espana-Romero V., Castro-Pinero J., Ortega F. B., Suni J., Castillo-Garzon M. J., et al. (2011). Reliability of field-based fitness tests in youth. Int. J. Sports Med. 32 159–169. 10.1055/s-0030-1268488
    1. Bailey R. (2017). Sport, physical activity and educational achievement – towards an explanatory model. Sport Soc. 20 768–788. 10.1080/17430437.2016.1207756
    1. Bailey R., Hillman C., Arent S., Petitpas A. (2013). Physical activity: an underestimated investment in human capital? J. Phys. Act Health 10 289–308. 10.1123/jpah.10.3.289
    1. Barreira T. V., Schuna J. M., Mire E. F., Katzmarzyk P. T., Chaput J. P., Leduc G., et al. (2015). Identifying Children’s nocturnal sleep using 24-h waist accelerometry. Med. Sci. Sports Exerc. 47 937–943. 10.1249/mss.0000000000000486
    1. Beets M. W., Okely A., Weaver R. G., Webster C., Lubans D., Brusseau T., et al. (2016). The theory of expanded, extended, and enhanced opportunities for youth physical activity promotion. Int. J. Behav. Nutr. Phys. Act 13:120.
    1. Best J. R. (2010). Effects of physical activity on children’s executive function: contributions of experimental research on aerobic exercise. Dev. Rev. 30 331–351. 10.1016/j.dr.2010.08.001
    1. Bingham D. D., Costa S., Hinkley T., Shire K. A., Clemes S. A., Barber S. E. (2016). Physical activity during the early years a systematic review of correlates and determinants. Am. J. Prev. Med. 51 384–402.
    1. Boe M., Hognestad K. (2017). Directing and facilitating distributed pedagogical leadership: best practices in early childhood education. Int. J. Leadersh. Educ. 20 133–148. 10.1080/13603124.2015.1059488
    1. Bonell C., Fletcher A., Morton M., Lorenc T., Moore L. (2012). Realist randomised controlled trials: a new approach to evaluating complex public health interventions. Soc. Sci. Med. 75 2299–2306. 10.1016/j.socscimed.2012.08.032
    1. Bornstein D. B., Beets M. W., Byun W., McIver K. (2011). Accelerometer-derived physical activity levels of preschoolers: a meta-analysis. J. Sci. Med. Sport 14 504–511. 10.1016/j.jsams.2011.05.007
    1. Braun V., Clarke V. (2006). Using thematic analysis in psychology. Qual. Res. Psychol. 3 77–101. 10.1191/1478088706qp063oa
    1. Cadenas-Sanchez C., Sanchez-Delgado G., Martinez-Tellez B., Mora-Gonzalez J., Lof M., Espana-Romero V., et al. (2016). Reliability and validity of different models of TKK hand dynamometers. Am. J. Occup. Ther. 70:700430 0010.
    1. Cain K. L., Sallis J. F., Conway T. L., Van Dyck D., Calhoon L. (2013). Using accelerometers in youth physical activity studies: a review of methods. J. Phys. Act Health 10 437–450. 10.1123/jpah.10.3.437
    1. Cameron C. E., Brock L. L., Murrah W. M., Bell L. H., Worzalla S. L., Grissmer D., et al. (2012). Fine motor skills and executive function both contribute to kindergarten achievement. Child Dev. 83 1229–1244. 10.1111/j.1467-8624.2012.01768.x
    1. Cameron Ponitz C. E., McClelland M. M., Jewkes A. M., Connor C. M., Farris C. L., Morrison F. J. (2008). Touch your toes! Developing a direct measure of behavioral regulation in early childhood. Early Child Res. Q. 23 141–158. 10.1016/j.ecresq.2007.01.004
    1. Campbell M. K., Piaggio G., Elbourne D. R., Altman D. G., Grp C. (2012). Consort 2010 statement: extension to cluster randomised trials. BMJ 345:e5661. 10.1136/bmj.e5661
    1. Carson V., Hunter S., Kuzik N., Wiebe S. A., Spence J. C., Friedman A., et al. (2016). Systematic review of physical activity and cognitive development in early childhood. J. Sci. Med. Sport 19 573–578. 10.1016/j.jsams.2015.07.011
    1. Carson V., Lee E. Y., Hewitt L., Jennings C., Hunter S., Kuzik N., et al. (2017). Systematic review of the relationships between physical activity and health indicators in the early years (0-4 years). BMC Public Health 17:854. 10.1186/s12889-017-4860-0
    1. Castro-Pinero J., Artero E. G., Espana-Romero V., Ortega F. B., Sjostrom M., Suni J., et al. (2010). Criterion-related validity of field-based fitness tests in youth: a systematic review. Br. J. Sports Med. 44 934–943. 10.1136/bjsm.2009.058321
    1. Chaddock L., Pontifex M. B., Hillman C. H., Kramer A. F. (2011). A review of the relation of aerobic fitness and physical activity to brain structure and function in children. J. Int. Neuropsychol. Soc. 17 975–985. 10.1017/s1355617711000567
    1. Chang Y. K., Tsai Y. J., Chen T. T., Hung T. M. (2013). The impacts of coordinative exercise on executive function in kindergarten children: an ERP study. Exp. Brain Res. 225 187–196. 10.1007/s00221-012-3360-9
    1. Cole T. J., Bellizzi M. C., Flegal K. M., Dietz W. H. (2000). Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320 1240–1243.
    1. De Vries S. I., Van Hirtum H., Bakker I., Hopman-Rock M., Hirasing R. A., Van Mechelen W. (2009). Validity and reproducibility of motion sensors in youth: a systematic update. Med. Sci. Sports Exerc. 41 818–827. 10.1249/mss.0b013e31818e5819
    1. Deena Skolnick W., Audrey K. K., Kathy H.-P., Roberta Michnick G., David K. (2015). Making play work for education. Phi Delta Kappan 96 8–13.
    1. Diamond A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 71 44–56. 10.1111/1467-8624.00117
    1. Diamond A. (2015). Effects of physical exercise on executive functions: going beyond simply moving to moving with thought. Ann. Sports Med. Res. 2:1011.
    1. Diamond A., Ling D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev. Cogn. Neurosci. 18 34–48. 10.1016/j.dcn.2015.11.005
    1. Donnelly J. E., Greene J. L., Gibson C. A., Smith B. K., Washburn R. A., Sullivan D. K., et al. (2009). Physical activity across the curriculum (PAAC): a randomized controlled trial to promote physical activity and diminish overweight and obesity in elementary school children. Prev. Med. 49 336–341. 10.1016/j.ypmed.2009.07.022
    1. Donnelly J. E., Hillman C. H., Castelli D., Etnier J. L., Lee S., Tomporowski P., et al. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med. Sci. Sports Exerc. 48 1197–1222. 10.1249/mss.0000000000000901
    1. Doyle O., Harmon C. P., Heckman J. J., Tremblay R. E. (2009). Investing in early human development: timing and economic efficiency. Econ. Hum. Biol. 7 1–6. 10.1016/j.ehb.2009.01.002
    1. Driediger M., Vanderloo L. M., Truelove S., Bruijns B. A., Tucker P. (2018). Encouraging kids to hop, skip, and jump: emphasizing the need for higher-intensity physical activity in childcare. J. Sport Health Sci. 7 333–336. 10.1016/j.jshs.2018.03.003
    1. Durlak J. A. (2016). Programme implementation in social and emotional learning: basic issues and research findings. Cambridge J. Educ. 46 333–345. 10.1080/0305764x.2016.1142504
    1. Eldridge S. M., Ashby D., Kerry S. (2006). Sample size for cluster randomized trials: effect of coefficient of variation of cluster size and analysis method. Int. J. Epidemiol. 35 1292–1300. 10.1093/ije/dyl129
    1. Enders C. K. (2011). Analyzing longitudinal data with missing values. Rehab. Psychol. 56 267–288. 10.1037/a0025579
    1. Esliger D. W., Copeland J. L., Barnes J. D., Tremblay M. S. (2005). Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. J. Phys. Act Health 2:366 10.1123/jpah.2.3.366
    1. Evenson K. R., Catellier D. J., Gill K., Ondrak K. S., McMurray R. G. (2008). Calibration of two objective measures of physical activity for children. J. Sports Sci. 26 1557–1565. 10.1080/02640410802334196
    1. Finch M., Jones J., Yoong S., Wiggers J., Wolfenden L. (2016). Effectiveness of centre-based childcare interventions in increasing child physical activity: a systematic review and meta-analysis for policymakers and practitioners. Obes. Rev. 17 412–428. 10.1111/obr.12392
    1. Fitzgerald M. M., Theilheimer R. (2013). Moving toward teamwork through professional development activities. Early Child. Educ. J. 41 103–113. 10.1007/s10643-012-0515-z
    1. Galland B. C., Short M. A., Terrill P., Rigney G., Haszard J. J., Coussens S., et al. (2018). Establishing normal values for pediatric nighttime sleep measured by actigraphy: a systematic review and meta-analysis. Sleep. 41:16.
    1. Garon N., Bryson S. E., Smith I. M. (2008). Executive function in preschoolers: a review using an integrative framework. Psychol. Bull. 134 31–60. 10.1037/0033-2909.134.1.31
    1. Goldfield G. S., Harvey A. L. J., Grattan K. P., Temple V., Naylor P. J., Alberga A. S., et al. (2016). Effects of child care intervention on physical activity and body composition. Am. J. Prev. Med. 51 225–231. 10.1016/j.amepre.2016.03.024
    1. Gomersall S. R., Rowlands A. V., English C., Maher C., Olds T. S. (2013). The activitystat hypothesis the concept, the evidence and the methodologies. Sports Med. 43 135–149. 10.1007/s40279-012-0008-7
    1. Goodman R. (1997). The strengths and difficulties questionnaire: a research note. J. Child. Psychol. Psychiatry 38 581–586. 10.1111/j.1469-7610.1997.tb01545.x
    1. Goodman R. (2001). Psychometric properties of the strengths and difficulties questionnaire. J. Am. Acad. Child Adolesc. Psychiatry 40 1337–1345. 10.1097/00004583-200111000-00015
    1. Greever C. J., Sirard J., Alhassan S. (2015). Objective analysis of preschoolers’ physical activity patterns during free playtime. J. Phys. Act Health 12 1253–1258. 10.1123/jpah.2014-0307
    1. Grieco L. A., Jowers E. M., Errisuriz V. L., Bartholomew J. B. (2016). Physically active vs. sedentary academic lessons: a dose response study for elementary student time on task. Prev. Med. 89 98–103. 10.1016/j.ypmed.2016.05.021
    1. Guadagnoli M. A., Lee T. D. (2004). Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J. Mot. Behav. 36 212–224. 10.3200/jmbr.36.2.212-224
    1. Hansen B. H., Kolle E., Dyrstad S. M., Holme I., Anderssen S. A. (2012). Accelerometer-determined physical activity in adults and older people. Med. Sci. Sports Exerc. 44 266–272. 10.1249/mss.0b013e31822cb354
    1. Heikka J., Pitkäniemi H., Kettukangas T., Hyttinen T. (2019). Distributed pedagogical leadership and teacher leadership in early childhood education contexts. Int. J. Leadersh. Educ. 10.1080/13603124.2019.1623923 [Epub ahead of print].
    1. Hestbaek L., Andersen S. T., Skovgaard T., Olesen L. G., Elmose M., Bleses D., et al. (2017). Influence of motor skills training on children’s development evaluated in the motor skills in preschool (MiPS) study-DK: study protocol for a randomized controlled trial, nested in a cohort study. Trials 18:400.
    1. Hjorth M. F., Chaput J. P., Damsgaard C. T., Dalskov S. M., Michaelsen K. F., Tetens I., et al. (2012). Measure of sleep and physical activity by a single accelerometer: can a waist-worn Actigraph adequately measure sleep in children? Sleep Biol. Rhythms 10 328–335. 10.1111/j.1479-8425.2012.00578.x
    1. Howard S. J., Melhuish E. (2017). An early years toolbox for assessing early executive function, language, self-regulation, and social development: validity, reliability, and preliminary norms. J. Psychoeduc. Assess. 35 255–275. 10.1177/0734282916633009
    1. Howie E. K., Brewer A., Brown W. H., Pfeiffer K. A., Saunders R. P., Pate R. R. (2014). The 3-year evolution of a preschool physical activity intervention through a collaborative partnership between research interventionists and preschool teachers. Health Educ. Res. 29 491–502. 10.1093/her/cyu014
    1. Howie E. K., Pate R. R. (2012). Physical activity and academic achievement in children: a historical perspective. J. Sport Health Sci. 1 160–169. 10.1016/j.jshs.2012.09.003
    1. Howie E. K., Pate R. R. (2018). “Physical activity and educational achievement. Dose-reponse relationships,” in Physical Activity and Educational Achievement. Insights from Exercise Neuroscience, eds Meeusen R., Schaefer S., Tomporowski P., Bailey R. (New York, NY: Taylor and Francis group; ).
    1. Howie E. K., Schatz J., Pate R. R. (2015). Acute effects of classroom exercise breaks on executive function and math performance: a dose-response study. Res. Q. Exerc. Sport 86 217–224. 10.1080/02701367.2015.1039892
    1. Humphrey N., Barlow A., Lendrum A. (2018). Quality matters: implementation moderates student outcomes in the PATHS curriculum. Prev. Sci. 19 197–208. 10.1007/s11121-017-0802-4
    1. John D., Freedson P. (2012). ActiGraph and actical physical activity monitors: a peek under the hood. Med. Sci. Sports Exerc. 44(1 Suppl. 1), S86–S89.
    1. Jones R. A., Okely A. D., Hinkley T., Batterham M., Burke C. (2016). Promoting gross motor skills and physical activity in childcare: a translational randomized controlled trial. J. Sci. Med. Sport 19 744–749. 10.1016/j.jsams.2015.10.006
    1. Kirk S. M., Vizcarra C. R., Looney E. C., Kirk E. P. (2014). Using physical activity to teach academic content: a study of the effects on literacy in head start preschoolers. Early Child Educ. J. 42 181–189. 10.1007/s10643-013-0596-3
    1. Koutsandréou F., Niemann C., Wegner M., Budde H. (2016). “Chapter 13 - acute exercise and cognition in children and adolescents: the roles of testosterone and cortisol A2 - MCMORRIS, terry,” in Exercise-Cognition Interaction, ed. McMorris T. (San Diego: Academic Press; ), 283–294. 10.1016/b978-0-12-800778-5.00013-x
    1. Koutsandreou F., Wegner M., Niemann C., Budde H. (2016). Effects of motor versus cardiovascular exercise training on children’s working memory. Med. Sci. Sports Exerc. 48 1144–1152. 10.1249/mss.0000000000000869
    1. Lendrum A., Humphrey N. (2012). The importance of studying the implementation of interventions in school settings. Oxford. Rev. Educ. 38 635–652. 10.1080/03054985.2012.734800
    1. Little R. J., D’Agostino R., Cohen M. L., Dickersin K., Emerson S. S., Farrar J. T., et al. (2012). The prevention and treatment of missing data in clinical trials. New Engl. J. Med. 367 1355–1360.
    1. Little T. D. (2013). Longitudinal Structural Equation Modeling. New York, NY: The Guilford Press.
    1. Määttä S., Gubbels J., Ray C., Koivusilta L., Nislin M., Sajaniemi N., et al. (2019). Children’s physical activity and the preschool physical environment: the moderating role of gender. Early Child. Res. Q. 47 39–48. 10.1016/j.ecresq.2018.10.008
    1. Mahar M. T., Murphy S. K., Rowe D. A., Golden J., Shields A. T., Raedeke T. D. (2006). Effects of a classroom-based program on physical activity and on-task behavior. Med. Sci. Sports Exerc. 38 2086–2094. 10.1249/01.mss.0000235359.16685.a3
    1. Marmot M. (2010). Fair Society, Healthy Lives. The Marmot Review. London: Local Government Association.
    1. Mavilidi M. F., Okely A., Chandler P., Cliff D., Paas F. (2015). Effects of integrated physical exercises and gestures on preschool children’s foreign language vocabulary learning. Educ. Psychol. Rev. 27 413–426. 10.1007/s10648-015-9337-z
    1. Mavilidi M. F., Okely A., Chandler P., Domazet S. L., Paas F. (2018a). Immediate and delayed effects of integrating physical activity into preschool children’s learning of numeracy skills. J. Exp. Child. Psychol. 166 502–519. 10.1016/j.jecp.2017.09.009
    1. Mavilidi M. F., Ruiter M., Schmidt M., Okely A. D., Loyens S., Chandler P., et al. (2018b). A narrative review of school-based physical activity for enhancing cognition and learning: the importance of relevancy and integration. Front. Psychol. 9:2079. 10.3389/fpsyg.2018.02079
    1. Mavilidi M. F., Okely A. D., Chandler P., Paas F. (2017). Effects of integrating physical activities into a science lesson on preschool children’s learning and enjoyment. Appl. Cogn. Psychol. 31 281–290. 10.1002/acp.3325
    1. May C., Finch T. (2009). Implementing, embedding, and integrating practices: an outline of normalization process theory. Sociology 43 535–554. 10.1177/0038038509103208
    1. McClelland M. M., Cameron C. E., Duncan R., Bowles R. P., Acock A. C., Miao A., et al. (2014). Predictors of early growth in academic achievement: the head-toes-knees-shoulders task. Front. Psychol. 5:599 10.3389/fpsyg.2018.0599
    1. McLeroy K. R., Bibeau D., Steckler A., Glanz K. (1988). An ecological perspective on health promotion programs. Health Educ. Q. 15 351–377. 10.1177/109019818801500401
    1. McMorris T., Hale B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation. Brain Cogn. 80 338–351. 10.1016/j.bandc.2012.09.001
    1. McNeill J., Howard S. J., Vella S. A., Santos R., Cliff D. P. (2018). Physical activity and modified organized sport among preschool children: associations with cognitive and psychosocial health. Ment. Health Phys. Act 15 45–52. 10.1016/j.mhpa.2018.07.001
    1. Meeusen R., Schaefer S., Tomporowski P., Bailey R. (2018). Physical Activity and Educational Achievement. Insights from Exercise Neuroscience. New York, NY: Routledge.
    1. Metzger J. S., Catellier D. J., Evenson K. R., Treuth M. S., Rosamond W. D., Siega-Riz A. M. (2008). Patterns of objectively measured physical activity in the United States. Med. Sci. Sports Exerc. 40 630–638.
    1. Mieloo C., Raat H., van Oort F., Bevaart F., Vogel I., Donker M., et al. (2012). Validity and reliability of the strengths and difficulties questionnaire in 5-6 year olds: differences by gender or by parental education? PLoS One 7:e36805. 10.1371/journal.pone.0036805
    1. Migueles J. H., Cadenas-Sanchez C., Ekelund U., Nystrom C. D., Mora-Gonzalez J., Lof M., et al. (2017). Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 47 1821–1845. 10.1007/s40279-017-0716-0
    1. Ministry of Health and Care Services (2007). Report No. 20 to the Storting (2006-2007) National Strategy To Reduce Social Inequalities In Health. Oslo, NO: Norwegian Ministry of Health and Care Services.
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn. Psychol. 41 49–100. 10.1006/cogp.1999.0734
    1. Moilanen R. (2005). Diagnosing and measuring learning organizations. Learn Organ. 12 71–89. 10.1108/09696470510574278
    1. Mullender-Wijnsma M. J., Hartman E., de Greeff J. W., Doolaard S., Bosker R. J., Visscher C. (2016). Physically active math and language lessons improve academic achievement: a cluster randomized controlled trial. Pediatrics 137:e20152743. 10.1542/peds.2015-2743
    1. Niederer I., Kriemler S., Gut J., Hartmann T., Schindler C., Barral J., et al. (2011). Relationship of aerobic fitness and motor skills with memory and attention in preschoolers (Ballabeina): A cross-sectional and longitudinal study. BMC Pediatr. 11:34. 10.1186/1471-2431-11-34
    1. Nilsen A. K. O., Anderssen S. A., Loftesnes J. M., Johannessen K., Ylvisaaker E., Aadland E. (2019a). The multivariate physical activity signature associated with fundamental motor skills in preschoolers. J. Sports Sci. 38 264–272. 10.1080/02640414.2019.1694128
    1. Nilsen A. K. O., Anderssen S. A., Resaland G. K., Johannessen K., Ylvisaaker E., Aadland E. (2019b). Boys, older children, and highly active children benefit most from the preschool arena regarding moderate-to-vigorous physical activity: a cross-sectional study of Norwegian preschoolers. Prev. Med. Rep. 14:100837. 10.1016/j.pmedr.2019.100837
    1. Nilsen A. K. O., Anderssen S. A., Ylvisåker E., Johannessen K., Aadland E. (2019c). Physical activity among norwegian preschoolers varies by sex, age, and season. Scand. J. Med. Sci. Sports 29 862–873. 10.1111/sms.13405
    1. Nonaka I. (1994). A dynamic theory of organizational knowledge creation. Organ. Sci. 5 14–37. 10.1287/orsc.5.1.14
    1. Norris E., van Steen T., Direito A., Stamatakis E. (2019). Physically active lessons in schools and their impact on physical activity, educational, health and cognition outcomes: a systematic review and meta-analysis. Br. J. Sports Med. 10.1136/bjsports-2018-100502 [Epub ahead of print].
    1. Norwegian Directorate for Education and Training (2017). Framework Plan for Kindergartens. Oslo, NO: Norwegian Directorate for Education and Training.
    1. O’Brien K. T., Vanderloo L. M., Bruijns B. A., Truelove S., Tucker P. (2018). Physical activity and sedentary time among preschoolers in centre-based childcare: a systematic review. Int. J. Behav. Nutr. Phys. Act 15:117.
    1. Ortega F. B., Cadenas-Sanchez C., Sanchez-Delgado G., Mora-Gonzalez J., Martinez-Tellez B., Artero E. G., et al. (2015). Systematic review and proposal of a field-based physical fitness-test battery in preschool children: the PREFIT battery. Sports Med. 45 533–555. 10.1007/s40279-014-0281-8
    1. Palmer K. K., Chinn K. M., Robinson L. E. (2017). Using achievement goal theory in motor skill instruction: a systematic review. Sports Med. 47 2569–2583. 10.1007/s40279-017-0767-2
    1. Pate R. R., Almeida M. J., McIver K. L., Pfeiffer K. A., Dowda M. (2006). Validation and calibration of an accelerometer in preschool children. Obesity 14 2000–2006. 10.1038/oby.2006.234
    1. Pedersen B. K., Saltin B. (2015). Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 25 1–72. 10.1111/sms.12581
    1. Pesce C. (2012). Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. J. Sport Exerc. Psychol. 34 766–786. 10.1123/jsep.34.6.766
    1. Pesce C., Croce R., Ben-Soussan T. D., Vazou S., McCullick B., Tomporowski P. D., et al. (2019). Variability of practice as an interface between motor and cognitive development. Int. J. Sport Exerc. Psychol. 17 133–152. 10.1080/1612197x.2016.1223421
    1. Pesce C., Crova C., Marchetti R., Struzzolino I., Masci I., Vannozzi G., et al. (2013). Seaching for cognitively optimal challenge point in physical activity for children with typical and atypical motor development. Ment. Health Phys. Act 6 172–180. 10.1016/j.mhpa.2013.07.001
    1. Pesce C., Faigenbaum A. D., Goudas M., Tomporowski P. (2018). “Coupling our plough of thoughtful moving to the star of children’s right to play,” in Physical Activity and Educational Achievement. Insights from Exercise Neuroscience, eds Meeusen R., Schaefer S., Tomporowski P., Bailey R. (New York, NY: Taylor & Francis Group; ).
    1. Pesce C., Leone L., Motta A., Marchetti R., Tomporowski P. D. (2016). From efficacy to effectiveness of a “whole child” initiative of physical activity promotion. Transl. J. Am. Coll. Sports Med. 1 18–29.
    1. Pfeiffer K. A., Saunders R. P., Brown W. H., Dowda M., Addy C. L., Pate R. R. (2013). Study of health and activity in preschool environments (SHAPES): study protocol for a randomized trial evaluating a multi-component physical activity intervention in preschool children. BMC Public Health 13:728. 10.1186/1471-2458-13-728
    1. Poitras V. J., Gray C. E., Borghese M. M., Carson V., Chaput J. P., Janssen I., et al. (2016). Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metabol. 41 S197–S239.
    1. Polit D. F., Gillespie B. M. (2010). Intention-to-treat in randomized controlled trials: recommendations for a total trial strategy. Res. Nurs. Health 33 355–368. 10.1002/nur.20386
    1. Ponitz C. C., McClelland M. M., Matthews J. S., Morrison F. J. (2009). A structured observation of behavioral self-regulation and its contribution to kindergarten outcomes. Dev. Psychol. 45 605–619. 10.1037/a0015365
    1. Reis R. S., Salvo D., Ogilvie D., Lambert E. V., Goenka S., Brownson R. C., et al. (2016). Scaling up physical activity interventions worldwide: stepping up to larger and smarter approaches to get people moving. Lancet 388 1337–1348. 10.1016/s0140-6736(16)30728-0
    1. Resaland G. K., Aadland E., Moe V. F., Aadland K. N., Skrede T., Stavnsbo M., et al. (2016). Effects of physical activity on schoolchildren’s academic performance: the active smarter kids (ASK) cluster-randomized controlled trial. Prev. Med. 91 322–328. 10.1016/j.ypmed.2016.09.005
    1. Resaland G. K., Aadland E., Nilsen A. K. O., Bartholomew J. B., Andersen L. B., Anderssen S. A. (2018a). The effect of a two-year school-based daily physical activity intervention on a clustered CVD risk factor scoreThe Sogndal school-intervention study. Scand. J. Med. Sci Sports 28 1027–1035. 10.1111/sms.12955
    1. Resaland G. K., Moe V. F., Bartholomew J. B., Andersen L. B., McKay H. A., Anderssen S. A., et al. (2018b). Gender-specific effects of physical activity on children’s academic performance: the active smarter kids cluster randomized controlled trial. Prev. Med. 106 171–176. 10.1016/j.ypmed.2017.10.034
    1. Roberts E., Montemurro G., McLeod N., Veugelers P. J., Storey K. E., Gleddie D. (2015). Implementing comprehensive school health in Alberta, Canada: the principal’s role. Health Promot. Int. 31 915–924. 10.1093/heapro/dav083
    1. Robinson L. E., Palmer K. K., Bub K. L. (2016). Effect of the children’s health activity motor program on motor skills and self-regulation in head start preschoolers: an efficacy trial. Front. Public Health 4:173. 10.3389/fpsyg.2018.00173
    1. Robinson L. E., Palmer K. K., Webster E. K., Logan S. W., Chinn K. M. (2018). The effect of CHAMP on physical activity and lesson context in preschoolers: a feasibility study. Res. Q. Exerc. Sport 89 265–271. 10.1080/02701367.2018.1441966
    1. Robinson L. E., Stodden D. F., Barnett L. M., Lopes V. P., Logan S. W., Rodrigues L. P., et al. (2015). Motor competence and its effect on positive developmental trajectories of health. Sports Med. 45 1273–1284. 10.1007/s40279-015-0351-6
    1. Roebers C. M., Rothlisberger M., Neuenschwander R., Cimeli P., Michel E., Jager K. (2014). The relation between cognitive and motor performance and their relevance for children’s transition to school: a latent variable approach. Hum. Mov. Sci. 33 284–297. 10.1016/j.humov.2013.08.011
    1. Routen A. C., Biddle S. J., Bodicoat D. H., Cale L., Clemes S., Edwardson C. L., et al. (2017). Study design and protocol for a mixed methods evaluation of an intervention to reduce and break up sitting time in primary school classrooms in the UK: The CLASS PAL (Physically Active Learning) Programme. BMJ Open 7:e019428. 10.1136/bmjopen-2017-019428
    1. Ruiz J. R., Castro-Pinero J., Espana-Romero V., Artero E. G., Ortega F. B., Cuenca M. M., et al. (2011). Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br. J. Sports Med. 45 518–524. 10.1136/bjsm.2010.075341
    1. Ruiz R. M., Sommer E. C., Tracy D., Banda J. A., Economos C. D., JaKa M. M., et al. (2018). Novel patterns of physical activity in a large sample of preschool-aged children. BMC Public Health 18:242. 10.1186/1471-2458-13-242
    1. Ryan R. M., Deci E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 55 68–78. 10.1037/0003-066x.55.1.68
    1. Sadeh A., Sharkey M., Carskadon M. A. (1994). Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep 17 201–207. 10.1093/sleep/17.3.201
    1. Sanchez-Delgado G., Cadenas-Sanchez C., Mora-Gonzalez J., Martinez-Tellez B., Chillon P., Lof M., et al. (2015). Assessment of handgrip strength in preschool children aged 3 to 5 years. J. Hand. Surg. Eur. 40 966–972. 10.1177/1753193415592328
    1. Schmidt M., Jager K., Egger F., Roebers C. M., Conzelmann A. (2015). Cognitively engaging chronic physical activity, but not aerobic exercise, affects executive functions in primary school children: a group-randomized controlled trial. J. Sport Exerc. Psychol. 37 575–591. 10.1123/jsep.2015-0069
    1. Singh A. S., Saliasi E., van den Berg V., Uijtdewilligen L., de Groot R. H. M., Jolles J., et al. (2019). Effects of physical activity interventions on cognitive and academic performance in children and adolescents: a novel combination of a systematic review and recommendations from an expert panel. Br. J. Sports Med. 53 640–647. 10.1136/bjsports-2017-098136
    1. Søvik M. L., Larsen T., Tjomsland H. E., Samdal O., Wold B. (2017). Barriers in implementing coach education in grassroots youth football in norway. Int. Sport Coach. J. 4 162–176. 10.1123/iscj.2016-0106
    1. Springer A. E., Evans A. E., Ortuño J., Salvo D., Varela Arévalo M. T. (2017). Health by design: interweaving health promotion into environments and Settings. Front. Public Health 5:268. 10.3389/fpubh.2017.00268
    1. Stodden D. F., Goodway J. D., Langendorfer S. J., Roberton M. A., Rudisill M. E., Garcia C., et al. (2008). A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest 60 290–306. 10.1080/00336297.2008.10483582
    1. Stone L. L., Otten R., Engels R. C. M. E., Vermulst A. A., Janssens J. M. A. M. (2010). Psychometric properties of the parent and teacher versions of the strengths and difficulties questionnaire for 4- to 12-year-olds: a review. Clin. Child Fam. Psychol. Rev. 13 254–274. 10.1007/s10567-010-0071-2
    1. Sun S. H., Zhu Y. C., Shih C. L., Lin C. H., Wu S. K. (2010). Development and initial validation of the preschooler gross motor quality scale. Res. Dev. Disabil. 31 1187–1196. 10.1016/j.ridd.2010.08.002
    1. Sunrise (2020). Available at: (accessed June 24, 2020).
    1. Tetens I., Pedersen A. N., Schwab U., Fogelholm M., Thorsdottir I., Gunnarsdottir I., et al. (2014). Nordic Nutrition Recommendations 2012: Integrating nutrition and physical activity. Copenhagen: Nordisk råd.
    1. The Norwegian Directorate of Education (2016). Statistikkportalen. Oslo, NO: The Norwegian Directorate of Education.
    1. Thompson R. A., Nelson C. A. (2001). Developmental science and the media. Early Brain Dev. Am. Psychol. 56 5–15.
    1. Timmons B. W., LeBlanc A. G., Carson V., Gorber S. C., Dillman C., Janssen I., et al. (2012). Systematic review of physical activity and health in the early years (aged 0-4 years). Appl. Physiol. Nutr. Metabol. 37 773–792. 10.1139/h2012-070
    1. Tomporowski P. D., Davis C. L., Miller P. H., Naglieri J. A. (2008). Exercise and children’s intelligence, cognition, and academic achievement. Educ. Psychol. Rev. 20 111–131. 10.1007/s10648-007-9057-0
    1. Tomporowski P. D., Lambourne K., Okumura M. S. (2011). Physical activity interventions and children’s mental function: an introduction and overview. Prev. Med. 52 S3–S9.
    1. Tomporowski P. D., McCullick B., Pesce C. (2015). Enhancing Children’s Cognition With Physical Activity Games. Champaign, IL: Human Kinetics.
    1. Troiano R. P., Berrigan D., Dodd K. W., Masse L. C., Tilert T., McDowell M. (2008). Physical activity in the United States measured by accelerometer. Med. Sci Sports Exerc. 40 181–188.
    1. Trost S. G., Loprinzi P. D., Moore R., Pfeiffer K. A. (2011). Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 43 1360–1368. 10.1249/mss.0b013e318206476e
    1. Truelove S., Bruijns B. A., Vanderloo L. M., O’Brien K. T., Johnson A. M., Tucker P. (2018). Physical activity and sedentary time during childcare outdoor play sessions: A systematic review and meta-analysis. Prev. Med. 108 74–85. 10.1016/j.ypmed.2017.12.022
    1. Tucker P., Vanderloo L. M., Johnson A. M., Burke S. M., Irwin J. D., Gaston A., et al. (2017). Impact of the supporting physical activity in the childcare environment (SPACE) intervention on preschoolers’ physical activity levels and sedentary time: a single-blind cluster randomized controlled trial. Int. J. Behav. Nutr. Phys. Act 14:120.
    1. Ulrich D. (2013). Test of Gross Motor Development, 3rd Edn, Ann Arbor, MI: Center on Physical Activity and Health in Pediatric Disabilities.
    1. Ulrich D. A. (2019). Test of Gross Motor Development - Third edition. Examiner’s Manual. Austin, TX: Therapro.
    1. Ulset V., Vitaro F., Brendgen M., Bekkhus M., Borge A. I. H. (2017). Time spent outdoors during preschool: links with children’s cognitive and behavioral development. J. Environ. Psychol. 52 69–80. 10.1016/j.jenvp.2017.05.007
    1. van der Fels I. M. J., te Wierike S. C. M., Hartman E., Elferink-Gemser M. T., Smith J., Visscher C. (2015). The relationship between motor skills and cognitive skills in 4-16 year old typically developing children: a systematic review. J. Sci. Med. Sport 18 697–703. 10.1016/j.jsams.2014.09.007
    1. von Suchodoletz A., Gestsdottir S., Wanless S. B., McClelland M. M., Birgisdottir F., Gunzenhauser C., et al. (2013). Behavioral self-regulation and relations to emergent academic skills among children in Germany and Iceland. Early Child Res. Q. 28 62–73. 10.1016/j.ecresq.2012.05.003
    1. Wells G. (1999). Dialogic Inquiry: Towards a Socio-cultural Practice and Theory of Education. Cambridge: Cambridge University Press.
    1. Wick K., Leeger-Aschmann C. S., Monn N. D., Radtke T., Ott L. V., Rebholz C. E., et al. (2017). Interventions to promote fundamental movement skills in childcare and kindergarten: a systematic review and meta-analysis. Sports Med. 47 2045–2068. 10.1007/s40279-017-0723-1
    1. World Health Organization [WHO] (2019). WHO Guidelines on Physical Activity, Sedentary Bahavior And Sleep For Children Under 5 Years Of Age. Geneva: World Health Organization.
    1. World Medical Association [WMA] (2017). WMA Declaration Of Helsinki – Ethical Principles For Medical Research Involving Human Subjects. Ferney-Voltaire: WMA.
    1. Zinkhan M., Berger K., Hense S., Nagel M., Obst A., Koch B., et al. (2014). Agreement of different methods for assessing sleep characteristics: a comparison of two actigraphs, wrist and hip placement, and self-report with polysomnography. Sleep Med. 15 1107–1114. 10.1016/j.sleep.2014.04.015

Source: PubMed

3
구독하다