Efficacy and improvement of lipid profile after switching to rilpivirine in resource limited setting: real life clinical practice

Sivaporn Gatechompol, Anchalee Avihingsanon, Tanakorn Apornpong, Win Min Han, Stephen J Kerr, Kiat Ruxrungtham, Sivaporn Gatechompol, Anchalee Avihingsanon, Tanakorn Apornpong, Win Min Han, Stephen J Kerr, Kiat Ruxrungtham

Abstract

Background: Long-term success of cART is possible if the regimen is convenient and less-toxic. This study assessed the efficacy and safety of switching from a first-line NNRTI or boosted PI-based regimens to RPV-based regimens among virologically suppressed participants in resource-limited setting (RLS).

Methods: This is a prospective cohort study. Participants with plasma HIV-RNA < 50 copies/mL receiving cART were switched from a PI- or NNRTI-based, to a RPV-based regimen between January 2011 and April 2018. The primary endpoint was the proportion of patients with plasma HIV-1 RNA level < 50 copies/mL after 12 months of RPV. The secondary endpoint was the virological response at 24 months and safety endpoint (change in lipid profiles and kidney function from baseline to 12 months).

Results: A total of 320 participants were enrolled into the study. The rationale for switching to RPV was based on toxicity of the current regimen (57%) or desire to simplify cART (41%). Totally, 177 (55%) and 143 (45%) participants were on NNRTI and boosted PI, respectively, prior to switching to RPV. After 12 months, 298 (93%) participants maintained virological suppression. There were significant improvements in the lipid parameters: TC (- 21 (IQR - 47 to 1) mg/dL; p < 0.001), LDL (- 14 (IQR - 37 to 11) mg/dL; p < 0.001) and TG (- 22 (IQR - 74 to 10) mg/dL; p < 0.001). Also, there was a small but statistically significant decrease in eGFR (- 4.3 (IQR - 12 to 1.1) mL/min per 1.73m2; p < 0.001).

Conclusions: In RLS where integrase inhibitors are not affordable, RPV-based regimens are a good alternative option for PLHIV who cannot tolerate first-line NNRTI or boosted PI regimen, without prior NNRTI/PI resistance. Trial registration HIV-NAT 006 cohort, clinical trial number: NCT00411983.

Keywords: Dyslipidemia; HIV; Resource limited setting; Rilpivirine; Switching.

Conflict of interest statement

AA participated in a company sponsored speaker’s bureau from Jensen-Cilag, Gilead and Bristol-Meyer Squibb. KR has received the Senior Research Scholar from Thailand Research Fund (TRF). He also has participated in a company sponsored speaker’s bureau from Abbott, Gilead, Bristol-Myers Squibb, Merck, Roche, Jensen-Cilag, GlaxoSmithKline, and GPO (Governmental pharmaceutical organization). The rest of the authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Proportion of patient with a viral load (VL) PI protease inhibitor, NNRTI non-nucleoside reverse transcriptase inhibitor
Fig. 2
Fig. 2
Median changes in lipid profile from baseline to 12 months in patients switching to rilpivirine. HDL high-density lipoprotein, LDL low-density lipoprotein, TC total cholesterol, TG triglyceride

References

    1. Palella FJ, Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998;338:853–860. doi: 10.1056/NEJM199803263381301.
    1. Ledergerber B, Egger M, Opravil M, Telenti A, Hirschel B, Battegay M, et al. Clinical progression and virological failure on highly active antiretroviral therapy in HIV-1 patients: a prospective cohort study. Swiss HIV Cohort Study. Lancet. 1999;353:863–868. doi: 10.1016/S0140-6736(99)01122-8.
    1. Teeraananchai S, Chaivooth S, Kerr SJ, Bhakeecheep S, Avihingsanon A, Teeraratkul A, et al. Life expectancy after initiation of combination antiretroviral therapy in Thailand. Antivir Ther. 2017;22:393–402. doi: 10.3851/IMP3121.
    1. World Health Organization (WHO). Updated recommendations on first-line and second-line antiretroviral regimens and post exposure prophylaxis and recommendation on early infant diagnosis of HIV: interim guidance. . Accessed 22 Nov 2018.
    1. Department of Health and Human Services (DHHS). Guideline for the use of antiretroviral agents in HIV-1-infected adult and adolescent . Accessed 22 Nov 2018.
    1. Schafer JJ, Short WR. Rilpivirine, a novel non-nucleoside reverse transcriptase inhibitor for the management of HIV-1 infection: a systematic review. Antivir Ther. 2012;17:1495–1502. doi: 10.3851/IMP2254.
    1. Cohen CJ, Molina JM, Cassetti I, Chetchotisakd P, Lazzarin A, Orkin C, et al. Week 96 efficacy and safety of rilpivirine in treatment-naive, HIV-1 patients in two Phase III randomized trials. Aids. 2013;27:939–950. doi: 10.1097/QAD.0b013e32835cee6e.
    1. Nelson MR, Elion RA, Cohen CJ, Mills A, Hodder SL, Segal-Maurer S, et al. Rilpivirine versus efavirenz in HIV-1-infected subjects receiving emtricitabine/tenofovir DF: pooled 96-week data from ECHO and THRIVE Studies. HIV Clin Trials. 2013;14:81–91. doi: 10.1310/hct1403-81.
    1. Cohen CJ, Molina JM, Cahn P, Clotet B, Fourie J, Grinsztejn B, et al. Efficacy and safety of rilpivirine (TMC278) versus efavirenz at 48 weeks in treatment-naive HIV-1-infected patients: pooled results from the phase 3 double-blind randomized ECHO and THRIVE Trials. J Acquir Immune Defic Syndr. 2012;60:33–42. doi: 10.1097/QAI.0b013e31824d006e.
    1. Janssen-Cilag SpA, Latina, Italy. Package insert for Edurant (rilpivirine) . Accessed 22 Nov 2018.
    1. Tran AH, Best BM, Stek A, Wang J, Capparelli EV, Burchett SK, et al. Pharmacokinetics of Rilpivirine in HIV-Infected Pregnant Women. J Acquir Immune Defic Syndr. 2016;72:289–296. doi: 10.1097/QAI.0000000000000968.
    1. Crauwels HM, van Heeswijk RP, Buelens A, Stevens M, Boven K, Hoetelmans RM. Impact of food and different meal types on the pharmacokinetics of rilpivirine. J Clin Pharmacol. 2013;53:834–840. doi: 10.1002/jcph.107.
    1. Gazaignes S, Resche-Rigon M, Gatey C, Yang C, Denis B, Fonsart J, et al. Efficacy and safety of a switch to rilpivirine-based regimens in treatment-experienced HIV-1-infected patients: a cohort study. Antivir Ther. 2016;21:329–336. doi: 10.3851/IMP3010.
    1. Gantner P, Reinhart S, Partisani M, Baldeyrou M, Batard ML, Bernard-Henry C, et al. Switching to emtricitabine, tenofovir and rilpivirine as single tablet regimen in virologically suppressed HIV-1-infected patients: a cohort study. HIV Med. 2015;16:132–136. doi: 10.1111/hiv.12183.
    1. Pinnetti C, Di Giambenedetto S, Maggiolo F, Fabbiani M, Sterrantino G, Latini A, et al. Switching to coformulated rilpivirine/emtricitabine/tenofovir in virologically suppressed patients: data from a multicenter cohort. J Acquir Immune Defic Syndr. 2015;70:e147–e150. doi: 10.1097/QAI.0000000000000727.
    1. Arrabal-Durán Paula, Rodríguez-González Carmen G, Chamorro-de-Vega Esther, Gijón-Vidaurreta Paloma, Herranz-Alonso Ana, Sanjurjo-Sáez María. Switching to a rilpivirine/emtricitabine/tenofovir single-tablet regimen in RNA-suppressed patients infected with human immunodeficiency virus 1: Effectiveness, safety and costs at 96 weeks. International Journal of Clinical Practice. 2017;71(8):e12968. doi: 10.1111/ijcp.12968.
    1. Palella FJ, Jr, Fisher M, Tebas P, Gazzard B, Ruane P, Van Lunzen J, et al. Simplification to rilpivirine/emtricitabine/tenofovir disoproxil fumarate from ritonavir-boosted protease inhibitor antiretroviral therapy in a randomized trial of HIV-1 RNA-suppressed participants. Aids. 2014;28:335–344. doi: 10.1097/QAD.0000000000000087.
    1. Mills AM, Cohen C, Dejesus E, Brinson C, Williams S, Yale KL, et al. Efficacy and safety 48 weeks after switching from efavirenz to rilpivirine using emtricitabine/tenofovir disoproxil fumarate-based single-tablet regimens. HIV Clin Trials. 2013;14:216–223. doi: 10.1310/hct1405-216.
    1. Gianotti N, Poli A, Nozza S, Spagnuolo V, Tambussi G, Bossolasco S, et al. Efficacy and safety in clinical practice of a rilpivirine, tenofovir and emtricitabine single-tablet regimen in virologically suppressed HIV-positive patients on stable antiretroviral therapy. J Int AIDS Soc. 2015;18:20037. doi: 10.7448/IAS.18.1.20037.
    1. Surgers L, Valin N, Viala C, Boyd A, Fonquernie L, Girard PM, et al. Evaluation of the efficacy and safety of switching to tenofovir, emtricitabine, and rilpivirine in treatment-experienced patients. J Acquir Immune Defic Syndr. 2015;68:e10–e12. doi: 10.1097/QAI.0000000000000401.
    1. Bagella P, De Socio GV, Ricci E, Menzaghi B, Martinelli C, Squillace N, et al. Durability, safety, and efficacy of rilpivirine in clinical practice: results from the SCOLTA Project. Infect Drug Resist. 2018;11:615–623. doi: 10.2147/IDR.S152090.
    1. Farahani M, Mulinder H, Farahani A, Marlink R. Prevalence and distribution of non-AIDS causes of death among HIV-infected individuals receiving antiretroviral therapy: a systematic review and meta-analysis. Int J STD AIDS. 2017;28:636–650. doi: 10.1177/0956462416632428.
    1. Gutierrez F, Fulladosa X, Barril G, Domingo P. Renal tubular transporter-mediated interactions of HIV drugs: implications for patient management. AIDS Rev. 2014;16:199–212.
    1. McLaughlin MM, Guerrero AJ, Merker A. Renal effects of non-tenofovir antiretroviral therapy in patients living with HIV. Drugs Context. 2018;7:212519. doi: 10.7573/dic.212519.

Source: PubMed

3
구독하다