Early increase in circulating carbonic anhydrase IX during neoadjuvant treatment predicts favourable outcome in locally advanced rectal cancer

Helga Helseth Hektoen, Kjersti Flatmark, Yvonne Andersson, Svein Dueland, Kathrine Røe Redalen, Anne Hansen Ree, Helga Helseth Hektoen, Kjersti Flatmark, Yvonne Andersson, Svein Dueland, Kathrine Røe Redalen, Anne Hansen Ree

Abstract

Background: Locally advanced rectal cancer (LARC) comprises heterogeneous tumours with predominant hypoxic components. The hypoxia-inducible metabolic shift causes microenvironmental acidification generated by carbonic anhydrase IX (CAIX) and facilitates metastatic progression, the dominant cause of failure in LARC.

Methods: Using a commercially available immunoassay, circulating CAIX was assessed in prospectively archived serial serum samples collected during combined-modality neoadjuvant treatment of LARC patients and correlated to histologic tumour response and progression-free survival (PFS).

Results: Patients who from their individual baseline level displayed serum CAIX increase above a threshold of 224 pg/ml (with 96 % specificity and 39 % sensitivity) after completion of short-course neoadjuvant chemotherapy (NACT) prior to long-course chemoradiotherapy and definitive surgery had significantly better 5-year PFS (94 %) than patients with below-threshold post-NACT versus baseline alteration (PFS rate of 56 %; p < 0.01). This particular CAIX parameter, ΔNACT, was significantly correlated with histologic ypT0-2 and ypN0 outcome (p < 0.01) and remained an independent PFS predictor in multivariate analysis wherein it was entered as continuous variable (p = 0.04).

Conclusions: Our results indicate that low ΔNACT, i.e., a weak increase in serum CAIX level following initial neoadjuvant treatment (in this case two cycles of the Nordic FLOX regimen), might be used as risk-adapted stratification to postoperative therapy or other modes of intensification of the combined-modality protocol in LARC.

Trial registration: ClinicalTrials.gov NCT00278694.

Figures

Fig. 1
Fig. 1
Serum carbonic anhydrase IX (CAIX) levels during neoadjuvant treatment of patients with locally advanced rectal cancer. Using a commercially available immunoassay, CAIX was measured in serum sampled from the study patients at baseline (n = 66), following four weeks of neoadjuvant chemotherapy (post-NACT; n = 66), at completion of a 5-week course of chemoradiotherapy (post-CRT; n = 54) and at evaluation of the neoadjuvant therapy four weeks later (n = 50). CAIX values are depicted by boxes (25th, 50th and 75th percentiles), bars (10th and 90th percentiles) and circles (outlier values). Distribution of CAIX values during the neoadjuvant course was different from baseline (* p < 0.05, ** p < 0.001; calculated by Mann-Whitney U-test)
Fig. 2
Fig. 2
Serum carbonic anhydrase IX (CAIX) levels and progression-free survival in locally advanced rectal cancer. Progression-free survival was analysed (by the Kaplan-Meier method) for the population of 66 study patients with paired serum sample measurements of CAIX following neoadjuvant induction chemotherapy versus baseline (a variable termed ΔNACT), divided into two groups above (solid line) and below (dashed line) an estimated optimum cut-off ΔNACT value of 224 pg/ml. Difference between the two groups was significant (p < 0.01)

References

    1. Aklilu M, Eng C. The current landscape of locally advanced rectal cancer. Nat Rev Clin Oncol. 2011;8:649–59. doi: 10.1038/nrclinonc.2011.118.
    1. Gerard JP, Azria D, Gourgou-Bourgade S, Martel-Lafay I, Hennequin C, Etienne PL, et al. Clinical outcome of the ACCORD 12/0405 PRODIGE 2 randomized trial in rectal cancer. J Clin Oncol. 2012;30:4558–65. doi: 10.1200/JCO.2012.42.8771.
    1. Bosset JF, Calais G, Mineur L, Maingon P, Stojanovic-Rundic S, Bensadoun RJ, et al. Fluorouracil-based adjuvant chemotherapy after preoperative chemoradiotherapy in rectal cancer: long-term results of the EORTC 22921 randomised study. Lancet Oncol. 2014;15:184–90.
    1. Sorbye H, Glimelius B, Berglund A, Fokstuen T, Tveit KM, Braendengen M, et al. Multicenter phase II study of Nordic fluorouracil and folinic acid bolus schedule combined with oxaliplatin as first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2004;22:31–8. doi: 10.1200/JCO.2004.05.188.
    1. Casazza A, Di Conza G, Wenes M, Finisguerra V, Deschoemaeker S, Mazzone M. Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene. 2014;33:1743–54. doi: 10.1038/onc.2013.121.
    1. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12:685–98. doi: 10.1038/nrc3365.
    1. Parks SK, Chiche J, Pouyssegur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer. 2013;13:611–23. doi: 10.1038/nrc3579.
    1. Sedlakova O, Svastova E, Takacova M, Kopacek J, Pastorek J, Pastorekova S. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front Physiol. 2014;4:400. doi: 10.3389/fphys.2013.00400.
    1. Jubb AM, Buffa FM, Harris AL. Assessment of tumour hypoxia for prediction of response to therapy and cancer prognosis. J Cell Mol Med. 2010;14:18–29. doi: 10.1111/j.1582-4934.2009.00944.x.
    1. Bose P, Dort JC, Brockton NT. Identifying the stromal cell type that contributes to tumor aggressiveness associated with carbonic anhydrase IX. Cell Cycle. 2013;12:2535–6. doi: 10.4161/cc.25843.
    1. Zatovicova M, Pastorekova S. Modulation of cell surface density of carbonic anhydrase IX by shedding of the ectodomain and endocytosis. Acta Virol. 2013;57:257–64. doi: 10.4149/av_2013_02_257.
    1. Folkvord S, Flatmark K, Dueland S, de Wijn R, Groholt KK, Hole KH, et al. Prediction of response to preoperative chemoradiotherapy in rectal cancer by multiplex kinase activity profiling. Int J Radiat Oncol Biol Phys. 2010;78:555–62. doi: 10.1016/j.ijrobp.2010.04.036.
    1. Bouzourene H, Chaubert P, Gebhard S, Bosman FT, Coucke P. Role of metallothioneins in irradiated human rectal carcinoma. Cancer. 2002;95:1003–8. doi: 10.1002/cncr.10780.
    1. Hole KH, Larsen SG, Groholt KK, Giercksky KE, Ree AH. Magnetic resonance-guided histopathology for improved accuracy of tumor response evaluation of neoadjuvant treatment in organ-infiltrating rectal cancer. Radiother Oncol. 2013;107:178–83. doi: 10.1016/j.radonc.2013.03.017.
    1. Cleven AH, van Engeland M, Wouters BG, de Bruine AP. Stromal expression of hypoxia regulated proteins is an adverse prognostic factor in colorectal carcinomas. Cell Oncol. 2007;29:229–40.
    1. Korkeila E, Talvinen K, Jaakkola PM, Minn H, Syrjanen K, Sundstrom J, et al. Expression of carbonic anhydrase IX suggests poor outcome in rectal cancer. Br J Cancer. 2009;100:874–80. doi: 10.1038/sj.bjc.6604949.
    1. Rasheed S, Harris AL, Tekkis PP, Turley H, Silver A, McDonald PJ, et al. Assessment of microvessel density and carbonic anhydrase-9 (CA-9) expression in rectal cancer. Pathol Res Pract. 2009;205:1–9. doi: 10.1016/j.prp.2008.08.008.
    1. Guedj N, Bretagnol F, Rautou PE, Deschamps L, Cazals-Hatem D, Bedossa P, et al. Predictors of tumor response after preoperative chemoradiotherapy for rectal adenocarcinomas. Hum Pathol. 2011;42:1702–9. doi: 10.1016/j.humpath.2011.01.015.
    1. Lee-Kong SA, Ruby JA, Chessin DB, Pucciarelli S, Shia J, Riedel ER, et al. Hypoxia-related proteins in patients with rectal cancer undergoing neoadjuvant combined modality therapy. Dis Colon Rectum. 2012;55:990–5. doi: 10.1097/DCR.0b013e31825bd80c.
    1. Guillem JG, Chessin DB, Cohen AM, Shia J, Mazumdar M, Enker W, et al. Long-term oncologic outcome following preoperative combined modality therapy and total mesorectal excision of locally advanced rectal cancer. Ann Surg. 2005;241:829–36. doi: 10.1097/01.sla.0000161980.46459.96.
    1. Colpaert CG, Vermeulen PB, Fox SB, Harris AL, Dirix LY, Van Marck EA. The presence of a fibrotic focus in invasive breast carcinoma correlates with the expression of carbonic anhydrase IX and is a marker of hypoxia and poor prognosis. Breast Cancer Res Treat. 2003;81:137–47. doi: 10.1023/A:1025702330207.
    1. Nakao M, Ishii G, Nagai K, Kawase A, Kenmotsu H, Kon-No H, et al. Prognostic significance of carbonic anhydrase IX expression by cancer-associated fibroblasts in lung adenocarcinoma. Cancer. 2009;115:2732–43. doi: 10.1002/cncr.24303.
    1. Brockton N, Dort J, Lau H, Hao D, Brar S, Klimowicz A, et al. High stromal carbonic anhydrase IX expression is associated with decreased survival in P16-negative head-and-neck tumors. Int J Radiat Oncol Biol Phys. 2011;80:249–57. doi: 10.1016/j.ijrobp.2010.11.059.
    1. McCarthy K, Pearson K, Fulton R, Hewitt J. Pre-operative chemoradiation for non-metastatic locally advanced rectal cancer. Cochrane Database Syst Rev. 2012;12:CD008368.
    1. Calvo FA, Serrano FJ, Diaz-Gonzalez JA, Gomez-Espi M, Lozano E, Garcia R, et al. Improved incidence of pT0 downstaged surgical specimens in locally advanced rectal cancer (LARC) treated with induction oxaliplatin plus 5-fluorouracil and preoperative chemoradiation. Ann Oncol. 2006;17:1103–10. doi: 10.1093/annonc/mdl085.
    1. Chau I, Brown G, Cunningham D, Tait D, Wotherspoon A, Norman AR, et al. Neoadjuvant capecitabine and oxaliplatin followed by synchronous chemoradiation and total mesorectal excision in magnetic resonance imaging-defined poor-risk rectal cancer. J Clin Oncol. 2006;24:668–74. doi: 10.1200/JCO.2005.04.4875.
    1. Chua YJ, Barbachano Y, Cunningham D, Oates JR, Brown G, Wotherspoon A, et al. Neoadjuvant capecitabine and oxaliplatin before chemoradiotherapy and total mesorectal excision in MRI-defined poor-risk rectal cancer: a phase 2 trial. Lancet Oncol. 2010;11:241–8. doi: 10.1016/S1470-2045(09)70381-X.
    1. Dewdney A, Cunningham D, Tabernero J, Capdevila J, Glimelius B, Cervantes A, et al. Multicenter randomized phase II clinical trial comparing neoadjuvant oxaliplatin, capecitabine, and preoperative radiotherapy with or without cetuximab followed by total mesorectal excision in patients with high-risk rectal cancer (EXPERT-C) J Clin Oncol. 2012;30:1620–7. doi: 10.1200/JCO.2011.39.6036.
    1. Gunnlaugsson A, Anderson H, Fernebro E, Kjellen E, Bystrom P, Berglund K, et al. Multicentre phase II trial of capecitabine and oxaliplatin in combination with radiotherapy for unresectable colorectal cancer: the CORGI-L study. Eur J Cancer. 2009;45:807–13. doi: 10.1016/j.ejca.2008.11.017.
    1. Koeberle D, Burkhard R, von Moos R, Winterhalder R, Hess V, Heitzmann F, et al. Phase II study of capecitabine and oxaliplatin given prior to and concurrently with preoperative pelvic radiotherapy in patients with locally advanced rectal cancer. Br J Cancer. 2008;98:1204–9. doi: 10.1038/sj.bjc.6604297.
    1. Schou JV, Larsen FO, Rasch L, Linnemann D, Langhoff J, Hogdall E, et al. Induction chemotherapy with capecitabine and oxaliplatin followed by chemoradiotherapy before total mesorectal excision in patients with locally advanced rectal cancer. Ann Oncol. 2012;23:2627–33. doi: 10.1093/annonc/mds056.
    1. Aschele C, Cionini L, Lonardi S, Pinto C, Cordio S, Rosati G, et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J Clin Oncol. 2011;29:2773–80. doi: 10.1200/JCO.2010.34.4911.
    1. Gerard JP, Azria D, Gourgou-Bourgade S, Martel-Laffay I, Hennequin C, Etienne PL, et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J Clin Oncol. 2010;28:1638–44. doi: 10.1200/JCO.2009.25.8376.
    1. O’Connell MJ, Colangelo LH, Beart RW, Petrelli NJ, Allegra CJ, Sharif S, et al. Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: surgical end points from National Surgical Adjuvant Breast and Bowel Project trial R-04. J Clin Oncol. 2014;32:1927–34. doi: 10.1200/JCO.2013.53.7753.
    1. Rodel C, Liersch T, Becker H, Fietkau R, Hohenberger W, Hothorn T, et al. Preoperative chemoradiotherapy and postoperative chemotherapy with fluorouracil and oxaliplatin versus fluorouracil alone in locally advanced rectal cancer: initial results of the German CAO/ARO/AIO-04 randomised phase 3 trial. Lancet Oncol. 2012;13:679–87. doi: 10.1016/S1470-2045(12)70187-0.
    1. Petersen SH, Harling H, Kirkeby LT, Wille-Jorgensen P, Mocellin S. Postoperative adjuvant chemotherapy in rectal cancer operated for cure. The Cochrane Database Syst Rev. 2012;3:CD004078.

Source: PubMed

3
구독하다