Trapezius muscle activity increases during near work activity regardless of accommodation/vergence demand level

H O Richter, C Zetterberg, M Forsman, H O Richter, C Zetterberg, M Forsman

Abstract

Aim: To investigate if trapezius muscle activity increases over time during visually demanding near work.

Methods: The vision task consisted of sustained focusing on a contrast-varying black and white Gabor grating. Sixty-six participants with a median age of 38 (range 19-47) fixated the grating from a distance of 65 cm (1.5 D) during four counterbalanced 7-min periods: binocularly through -3.5 D lenses, and monocularly through -3.5 D, 0 D and +3.5 D. Accommodation, heart rate variability and trapezius muscle activity were recorded in parallel.

Results: General estimating equation analyses showed that trapezius muscle activity increased significantly over time in all four lens conditions. A concurrent effect of accommodation response on trapezius muscle activity was observed with the minus lenses irrespective of whether incongruence between accommodation and convergence was present or not.

Conclusions: Trapezius muscle activity increased significantly over time during the near work task. The increase in muscle activity over time may be caused by an increased need of mental effort and visual attention to maintain performance during the visual tasks to counteract mental fatigue.

Figures

Fig. 1
Fig. 1
Schematic illustration of the accommodative and convergence stimulus (dioptric consequences) for the different lenses used in the experiment (dotted line = accommodative stimulus diopters; full line = convergence stimulus diopters). BM binocular −3.5 D, MM monocular −3.5 D, MN monocular 0 D, and MP monocular +3.5 D
Fig. 2
Fig. 2
Frequency counts of individual mean accommodation response for the 7-min vision task for the four lens conditions (accommodation response7-min average). BM binocular −3.5 D, MM monocular −3.5 D, MN monocular 0 D, and MP monocular +3.5 D
Fig. 3
Fig. 3
Mean accommodation response for minutes 1 through 7 for the vision task in the four lens conditions (accommodation response1-min averages). Horizontalstippled lines denote stimulus diopters. Errorbars represent 95 % CI. BM binocular −3.5 D, MM monocular −3.5 D, MN monocular 0 D, and MP monocular +3.5 D
Fig. 4
Fig. 4
Mean of contrast thresholds for minutes 1 through 7 for the vision task for the four lens conditions (contrast thresholds1-min averages). Error bars represent 95 % CI. BM binocular −3.5 D, MM monocular −3.5 D, MN monocular 0 D, and MP monocular +3.5 D
Fig. 5
Fig. 5
Mean trapezius muscle activity (% RVE) during rest (white circles) and during the 7-min vision task (black circles) as a function of time for the four lens conditions. Error bars represent 95 % CI. BM binocular −3.5 D, MM monocular −3.5 D, MN monocular 0 D, and MP monocular +3.5 D
Fig. 6
Fig. 6
Predicted mean values from the GEE models (Table 2) for the trapezius muscle activity during the 7-min vision task. Error bars represent 95 % CI. BM binocular −3.5 D. MM monocular −3.5 D, MN monocular 0 D, and MP monocular +3.5 D

References

    1. Atchison DA, Capper EJ, McCabe KL. Critical subjective measurement of amplitude of accommodation. Optom Vis Sci. 1994;71:699–706. doi: 10.1097/00006324-199411000-00005.
    1. Bababekova Y, Rosenfield M, Hue JE, Huang RR. Font size and viewing distance of handheld smart phones. Optom Vis Sci. 2011;88:795–797. doi: 10.1097/OPX.0b013e3182198792.
    1. Ballinger Using generalized estimating equations for longitudinal data analysis. Organ Res Methods. 2004;7:127. doi: 10.1177/1094428104263672.
    1. Blade PJ, Candy TR. Validation of the PowerRefractor for measuring human infant refraction. Optom Vis Sci. 2006;83:346–353. doi: 10.1097/01.opx.0000221402.35099.fb.
    1. Blehm C, Vishnu S, Khattak A, Mitra S, Yee RW. Computer vision syndrome: a review. Surv Ophthalmol. 2005;50:253–262. doi: 10.1016/j.survophthal.2005.02.008.
    1. Campbell FW. The minimum quantity of light required to elicit the accommodation reflex in man. J Physiol. 1954;123:357–366. doi: 10.1113/jphysiol.1954.sp005056.
    1. Ciuffreda KJ. Accommodation, the pupil, and presbyopia. In: Benjamin WJ, editor. Borish’s clinical refraction. Philadelphia: W.B. Saunders Company; 1998. pp. 77–120.
    1. Collier JD, Rosenfield M. Accommodation and convergence during sustained computer work. Optometry. 2011;82:434–440. doi: 10.1016/j.optm.2010.10.013.
    1. Faber LG, Maurits NM, Lorist MM. Mental fatigue affects visual selective attention. PLoS One. 2012;7:e48073. doi: 10.1371/journal.pone.0048073.
    1. Fincham EF, Walton J. The reciprocal actions of accommodation and convergence. J Physiol. 1957;137:488–508. doi: 10.1113/jphysiol.1957.sp005829.
    1. Fitzmaurice G, Laird N, Ware J, editors. Applied longitudinal analysis. New York: Wiley; 2011.
    1. Franzén O, Richter HO, Stark L, editors. Accommodation/vergence mechanisms in the visual system. Basel: Birkhauser Verlag; 2000.
    1. Ghisletta P, Spini D. An introduction to generalized estimating equations and an application to assess selectivity effects in a longitudinal study on very old individuals. J Educ Behav Stat. 2004;29:421. doi: 10.3102/10769986029004421.
    1. Gobba FM, Broglia A, Sarti R, Luberto F, Cavalleri A. Visual fatigue in video display terminal operators: objective measure and relation to environmental conditions. Int Arch Occup Environ Health. 1988;60:81–87. doi: 10.1007/BF00381485.
    1. Grauer RA, Dunn BE. Central fatigue in a perstimulatory paradigm. J Aud Res. 1980;20:97–106.
    1. Gu YC, Legge GE. Accommodation to stimuli in peripheral vision. J Opt Soc Am A. 1987;4:1681–1687. doi: 10.1364/JOSAA.4.001681.
    1. Hanley JA, Negassa A, Edwardes MD, Forrester JE. Statistical analysis of correlated data using generalized estimating equations: an orientation. Am J Epidemiol. 2003;157:364–375. doi: 10.1093/aje/kwf215.
    1. Hockey GR. Compensatory control in the regulation of human performance under stress and high workload; a cognitive-energetical framework. Biol Psychol. 1997;45:73–93. doi: 10.1016/S0301-0511(96)05223-4.
    1. Iribarren R, Fornaciari A, Hung GK. Effect of cumulative nearwork on accommodative facility and asthenopia. Int Ophthalmol. 2001;24:205–212. doi: 10.1023/A:1022521228541.
    1. Iwanaga K, Saito S, Shimomura Y, Harada H, Katsuura T. The effect of mental loads on muscle tension, blood pressure and blink rate. J Physiol Anthropol Appl Human Sci. 2000;19:135–141. doi: 10.2114/jpa.19.135.
    1. Jaschinski-Kruza W. Transient myopia after visual work. Ergonomics. 1984;27:1181–1189. doi: 10.1080/00140138408963599.
    1. Jaschinski-Kruza W. Visual strain during VDU work: the effect of viewing distance and dark focus. Ergonomics. 1988;31:1449–1465. doi: 10.1080/00140138808966788.
    1. Jonsson B. Measurement and evaluation of local muscular strain in the shoulder during constrained work. J Hum Ergol (Tokyo) 1982;11:73–88.
    1. Kreczy A, Kofler M, Gschwendtner A. Underestimated health hazard: proposal for an ergonomic microscope workstation. Lancet. 1999;354:1701–1702. doi: 10.1016/S0140-6736(99)03131-1.
    1. Krupinski EA, Berbaum KS. Measurement of visual strain in radiologists. Acad Radiol. 2009;16:947–950. doi: 10.1016/j.acra.2009.02.008.
    1. Lie I, Watten RG. Oculomotor factors in the aetiology of occupational cervicobrachial diseases (OCD) Eur J Appl Physiol Occup Physiol. 1987;56:151–156. doi: 10.1007/BF00640638.
    1. Mathiassen SE, Winkel J, Hagg GM. Normalization of surface EMG amplitude from the upper trapezius muscle in ergonomic studies—a review. J Electromyogr Kinesiol. 1995;5:197–226. doi: 10.1016/1050-6411(94)00014-X.
    1. Mehta RK, Agnew MJ. Influence of mental workload on muscle endurance, fatigue, and recovery during intermittent static work. Eur J Appl Physiol. 2012;112:2891–2902. doi: 10.1007/s00421-011-2264-x.
    1. Nakagawa S, Sugiura M, Akitsuki Y, et al. Compensatory effort parallels midbrain deactivation during mental fatigue: an fMRI study. PLoS One. 2013;8:e56606. doi: 10.1371/journal.pone.0056606.
    1. Nordlund A, Ekberg K. Self reported musculoskeletal symptoms in the neck/shoulders and/or arms and general health (SF-36): 8 year follow up of a case–control study. Occup Environ Med. 2004;61:e11. doi: 10.1136/oem.2002.005249.
    1. Ong E, Ciuffreda CK. Nearwork-induced transient myopia: a critical review. Doc Ophthalmol. 1995;91:57–85. doi: 10.1007/BF01204624.
    1. Owens DA. A comparison of accommodative responsiveness and contrast sensitivity for sinusoidal gratings. Vis Res. 1980;20:159–167. doi: 10.1016/0042-6989(80)90158-3.
    1. Pelz J, Hayhoe M, Loeber R. The coordination of eye, head, and hand movements in a natural task. Exp Brain Res. 2001;139:266–277. doi: 10.1007/s002210100745.
    1. Prsa M, Dicke PW, Thier P. The absence of eye muscle fatigue indicates that the nervous system compensates for non-motor disturbances of oculomotor function. J Neurosci. 2010;30:15834–15842. doi: 10.1523/JNEUROSCI.3901-10.2010.
    1. Richter HO, Forsman M. Accommodation/vergence eye movements and neck/scapular muscular activation: gaze control with relevance for work-related musculoskeletal disorders. Curr Trends Neurol. 2011;5:99.
    1. Richter HO, Knez I. Superior short-wavelength contrast sensitivity in asthenopics during reflexive readjustments of ocular accommodation. Ophthalmic Physiol Opt. 2007;27:361–372. doi: 10.1111/j.1475-1313.2007.00494.x.
    1. Richter HO, Banziger T, Abdi S, Forsman M. Stabilization of gaze: a relationship between ciliary muscle contraction and trapezius muscle activity. Vis Res. 2010;50:2559–2569. doi: 10.1016/j.visres.2010.08.021.
    1. Richter H, Banziger T, Forsman M. Eye-lens accommodation load and static trapezius muscle activity. Eur J Appl Physiol. 2011;111:29–36. doi: 10.1007/s00421-010-1629-x.
    1. Rosenfield M, Howarth PA, Sheedy JE, Crossland MD. Vision and IT displays: a whole new visual world. Ophthalmic Physiol Opt. 2012;32:363–366. doi: 10.1111/j.1475-1313.2012.00936.x.
    1. Tanaka M, Watanabe Y. Supraspinal regulation of physical fatigue. Neurosci Biobehav Rev. 2012;36:727–734. doi: 10.1016/j.neubiorev.2011.10.004.
    1. Thorn S, Sogaard K, Kallenberg LA, et al. Trapezius muscle rest time during standardised computer work—a comparison of female computer users with and without self-reported neck/shoulder complaints. J Electromyogr Kinesiol. 2007;17:420–427. doi: 10.1016/j.jelekin.2006.04.010.
    1. Toomingas A, Hagberg M, Heiden M, Richter HO, Westergren KE, Wigaeus TE. Risk factors, incidence and duration of symptoms from the eyes among professional computer users. Work. 2014;47:291–301.
    1. Vilupuru AS, Kasthurirangan S, Glasser A. Dynamics of accommodative fatigue in rhesus monkeys and humans. Vis Res. 2005;45:181–191. doi: 10.1016/j.visres.2004.07.036.
    1. Wang Y, Szeto GP, Chan CC. Effects of physical and mental task demands on cervical and upper limb muscle activity and physiological responses during computer tasks and recovery periods. Eur J Appl Physiol. 2011;111:2791–2803. doi: 10.1007/s00421-011-1908-1.
    1. Watten RG, Lie I. Time factors in VDT-induced myopia and visual fatigue: an experimental study. J Hum Ergol (Tokyo) 1992;21:13–20.
    1. Watten RG, Lie I, Birketvedt O. The influence of long-term visual near-work on accommodation and vergence: a field study. J Hum Ergol (Tokyo) 1994;23:27–39.
    1. Wei P. Akaike’s information criterion in generalized estimating equations. Biometrics. 2001;57:120–125. doi: 10.1111/j.0006-341X.2001.00120.x.
    1. Widrow B, Glover J, Jr, McCOOL JM, Kaunitz J, Williams C, et al. Adaptive noise cancelling: principles and applications. Proc IEEE. 1975;63:1692–1716. doi: 10.1109/PROC.1975.10036.
    1. Woolfson MS, Peasgood W, Sahota DS, Crowe JA. Signal processing of the fetal electrocardiogram. J Electrocardiol. 1990;23(Suppl):51–57. doi: 10.1016/0022-0736(90)90075-D.
    1. Zetterberg C, Forsman M, Richter HO. Effects of visually demanding near work on trapezius muscle activity. J Electromyogr Kinesiol. 2013;23:1190–1198. doi: 10.1016/j.jelekin.2013.06.003.

Source: PubMed

3
구독하다