Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study

Kuo-Chen Wei, Po-Chun Chu, Hay-Yan Jack Wang, Chiung-Yin Huang, Pin-Yuan Chen, Hong-Chieh Tsai, Yu-Jen Lu, Pei-Yun Lee, I-Chou Tseng, Li-Ying Feng, Peng-Wei Hsu, Tzu-Chen Yen, Hao-Li Liu, Kuo-Chen Wei, Po-Chun Chu, Hay-Yan Jack Wang, Chiung-Yin Huang, Pin-Yuan Chen, Hong-Chieh Tsai, Yu-Jen Lu, Pei-Yun Lee, I-Chou Tseng, Li-Ying Feng, Peng-Wei Hsu, Tzu-Chen Yen, Hao-Li Liu

Abstract

The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI)-monitored focused ultrasound (FUS)-induced blood-brain barrier (BBB) disruption to enhance Temozolomide (TMZ) delivery for improving Glioblastoma Multiforme (GBM) treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF) and plasma by LC-MS\MS. The effects of treatment on tumor progression (by MRI), animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Conceptual diagrams of focused ultrasound…
Figure 1. Conceptual diagrams of focused ultrasound induced blood-brain barrier opening to enhance chemotherapeutic agent delivery for brain tumor treatment.
(a) Focused ultrasound is used to transcranially steer the exposure to the targeted brain tumor region; (b) focused ultrasound induces a local and reversible increase in BBB permeability of tight junctions in cerebral vessels and capillaries in the tumor core/ peripheral region. EC = endothelial cell, N = neuron, P = pericytes, A = astrocyte, D = chemotherapeutic agent, MB = microbubble.
Figure 2. Time course for animal experiments…
Figure 2. Time course for animal experiments and longitudinal MRI follow-up in experimental group 3.
Figure 3. Representative Evans Blue dye stained…
Figure 3. Representative Evans Blue dye stained Brain sections and calibrations after inducing FUS-BBB opening.
(a, b) brain sections viewed from the top and in corresponding brain sections. Bar = 5 mm. (c) Calibration of Evans Blue dye concentration using its correlation with ELISA light absorption (r2 = 0.9992). (d) Evans Blue quantification of experimental group 1 animals. FUS-BBB opening reached a 3.8-fold increase in EB concentration in normal rats (p<0.001) and a 2.1-fold increase in tumor rats (p = 0.09).
Figure 4. Representative MR images before (upper…
Figure 4. Representative MR images before (upper panel) and after (lower panel) conducting FUS BBB-opening in rat brain tumors.
(a, e) T1-weighted images; (b, f) Gd-DTPA contrast-enhanced T1-weighted images; (c, g) subtracted after and before Gd-DTPA injection T1 images; (d, h) T2-weighted images.
Figure 5. In-vivo TMZ concentration measurement.
Figure 5. In-vivo TMZ concentration measurement.
(a) Measured TMZ concentrations (in µg/ µL) in cerebrospinal fluid (CSF) and blood plasma in animals treated with TMZ only (TMZ; n = 4) or combined TMZ with FUS-BBB opening (TMZ+FUS; n = 6). (b) Corresponding CSF/Plasma ratios (in %) determined from (a) (p = 0.06).
Figure 6. Representative T2-weighted MR images to…
Figure 6. Representative T2-weighted MR images to monitor brain tumor progression at day 10 and 17 in experimental group 3.
(a) sham control; (b) low dose TMZ oral delivery; (c) median dose TMZ oral delivery; (d) high median dose TMZ oral delivery; (e, f) median dose TMZ integrated with FUS-BBB opening procedures.
Figure 7. Tumor progression observation among groups.
Figure 7. Tumor progression observation among groups.
(a) Tumor volume (in mm3) between day 10 and 17 in experimental group 3; (b) Ratio of the tumor volume between day 17 and day 10 determined from (a).
Figure 8. Kaplan–Meier plot demonstrating animal survival…
Figure 8. Kaplan–Meier plot demonstrating animal survival in experimental group 3.
Figure 9. Hematoxylin and eosin (H&E) stained…
Figure 9. Hematoxylin and eosin (H&E) stained sections of rat brains.
Tissues were collected for analysis from the TMZ-delivery alone ((a) – (c); brain samples obtained immediately after animal died) or combined TMZ/FUS exposure animals ((d) – (f): brain samples obtained after day 90). (a) and (d): whole brain section; (b) and (e): 4 ×;(c) and (f): 10 ×.

References

    1. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N (2005) Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 24: 12–20.
    1. Burger PC (1987) The anatomy of astrocytomas. Mayo Clin Proc 62: 527–529.
    1. Halperin EC, Burger PC, Bullard DE (1988) The fallacy of the localized supratentorial malignant glioma. Int J Radiat Oncol Biol Phys 15: 505–509.
    1. Ewing JR, Brown SL, Lu M, Panda S, Ding G, et al. (2006) Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab 26: 310–320.
    1. Groothuis DR, Fischer JM, Lapin G, Bigner DD, Vick NA (1982) Permeability of different experimental brain tumor models to horseradish peroxidase. J Neuropathol Exp Neurol 41: 164–185.
    1. Neuwelt EA, Barnett PA, Bigner DD, Frenkel EP (1982) Effects of adrenal cortical steroids and osmotic blood-brain barrier opening on methotrexate delivery to gliomas in the rodent: the factor of the blood-brain barrier. Proc Natl Acad Sci U S A 79: 4420–4423.
    1. Neuwelt EA, Frenkel EP, D′Agostino AN, Carney DN, Minna JD, et al. (1985) Growth of human lung tumor in the brain of the nude rat as a model to evaluate antitumor agent delivery across the blood-brain barrier. Cancer Res 45: 2827–2833.
    1. Neuwelt EA, Frenkel EP, Gumerlock MK, Braziel R, Dana B, et al. (1986) Developments in the diagnosis and treatment of primary CNS lymphoma. A prospective series. Cancer 58: 1609–1620.
    1. Neuwelt EA, Howieson J, Frenkel EP, Specht HD, Weigel R, et al. (1986) Therapeutic efficacy of multiagent chemotherapy with drug delivery enhancement by blood-brain barrier modification in glioblastoma. Neurosurgery 19: 573–582.
    1. Kim H, Likhari P, Parker D, Statkevich P, Marco A, et al. (2001) High-performance liquid chromatographic analysis and stability of anti-tumor agent temozolomide in human plasma. J Pharm Biomed Anal 24: 461–468.
    1. Kim HK, Lin CC, Parker D, Veals J, Lim J, et al. (1997) High-performance liquid chromatographic determination and stability of 5-(3-methyltriazen-1-yl)-imidazo-4-carboximide, the biologically active product of the antitumor agent temozolomide, in human plasma. J Chromatogr B Biomed Sci Appl 703: 225–233.
    1. Baker SD, Wirth M, Statkevich P, Reidenberg P, Alton K, et al. (1999) Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res 5: 309–317.
    1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, et al. (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10: 459–466.
    1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996.
    1. Grossman SA, Ye X, Piantadosi S, Desideri S, Nabors LB, et al. (2010) Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res 16: 2443–2449.
    1. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220: 640–646.
    1. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2003) Non-invasive opening of BBB by focused ultrasound. Acta Neurochir Suppl 86: 555–558.
    1. McDannold N, Vykhodtseva N, Raymond S, Jolesz FA, Hynynen K (2005) MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med Biol 31: 1527–1537.
    1. Mesiwala AH, Farrell L, Wenzel HJ, Silbergeld DL, Crum LA, et al. (2002) High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo. Ultrasound Med Biol 28: 389–400.
    1. Park J, Zhang Y, Vykhodtseva N, Jolesz FA, McDannold NJ (2012) The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound. J Control Release 162: 134–142.
    1. Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, et al. (2010) Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255: 415–425.
    1. Reyderman L, Statkevich P, Thonoor CM, Patrick J, Batra VK, et al. (2004) Disposition and pharmacokinetics of temozolomide in rat. Xenobiotica 34: 487–500.
    1. Brem S, Tyler B, Li K, Pradilla G, Legnani F, et al. (2007) Local delivery of temozolomide by biodegradable polymers is superior to oral administration in a rodent glioma model. Cancer Chemother Pharmacol 60: 643–650.
    1. Brock CS, Newlands ES, Wedge SR, Bower M, Evans H, et al. (1998) Phase I trial of temozolomide using an extended continuous oral schedule. Cancer Res 58: 4363–4367.
    1. Portnow J, Badie B, Chen M, Liu A, Blanchard S, et al. (2009) The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res 15: 7092–7098.
    1. Treat LH, McDannold N, Zhang Y, Vykhodtseva N, Hynynen K (2012) Improved Anti-Tumor Effect of Liposomal Doxorubicin After Targeted Blood-Brain Barrier Disruption by MRI-Guided Focused Ultrasound in Rat Glioma. Ultrasound Med Biol 38: 1716–1725.
    1. Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, et al. (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121: 901–907.
    1. Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, et al. (2010) Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A 107: 15205–15210.
    1. Shapiro WR, Green SB, Burger PC, Selker RG, VanGilder JC, et al. (1992) A randomized comparison of intra-arterial versus intravenous BCNU, with or without intravenous 5-fluorouracil, for newly diagnosed patients with malignant glioma. J Neurosurg 76: 772–781.
    1. Judy KD, Olivi A, Buahin KG, Domb A, Epstein JI, et al. (1995) Effectiveness of controlled release of a cyclophosphamide derivative with polymers against rat gliomas. J Neurosurg 82: 481–486.
    1. Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, et al. (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol 5: 79–88.
    1. Lidar Z, Mardor Y, Jonas T, Pfeffer R, Faibel M, et al. (2004) Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 100: 472–479.
    1. Parney IF, Kunwar S, McDermott M, Berger M, Prados M, et al. (2005) Neuroradiographic changes following convection-enhanced delivery of the recombinant cytotoxin interleukin 13-PE38QQR for recurrent malignant glioma. J Neurosurg 102: 267–275.
    1. Doolittle ND, Miner ME, Hall WA, Siegal T, Jerome E, et al. (2000) Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood-brain barrier for the treatment of patients with malignant brain tumors. Cancer 88: 637–647.
    1. Gumerlock MK, Belshe BD, Madsen R, Watts C (1992) Osmotic blood-brain barrier disruption and chemotherapy in the treatment of high grade malignant glioma: patient series and literature review. J Neurooncol 12: 33–46.
    1. Denny BJ, Wheelhouse RT, Stevens MF, Tsang LL, Slack JA (1994) NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochemistry 33: 9045–9051.
    1. Shen F, Decosterd LA, Gander M, Leyvraz S, Biollax J, et al. (1995) Determination of temozolomide in human plasma and urine by high-performance liquid chromatography after solid-phase extraction. J Chromatogr B Biomed Appl 667: 291–300.
    1. Tsang LL, Quarterman CP, Gescher A, Slack JA (1991) Comparison of the cytotoxicity in vitro of temozolomide and dacarbazine, prodrugs of 3-methyl-(triazen-1-yl)imidazole-4-carboxamide. Cancer Chemother Pharmacol 27: 342–346.
    1. Chowdhury SK, Laudicina D, Blumenkrantz N, Wirth M, Alton KB (1999) An LC/MS/MS method for the quantitation of MTIC (5-(3-N-methyltriazen-1-yl)-imidazole-4-carboxamide), a bioconversion product of temozolomide, in rat and dog plasma. J Pharm Biomed Anal 19: 659–668.
    1. Hynynen K, Clement GT, McDannold N, Vykhodtseva N, King R, et al. (2004) 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Magn Reson Med 52: 100–107.
    1. Wei KC, Tsai HC, Lu YJ, Yang HW, Hua MY, et al... (2012) Neuronavigation-Guided Focused Ultrasound-Induced Blood-Brain Barrier Opening: A Preliminary Study in Swine. AJNR Am J Neuroradiol.
    1. Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 94: 299–312.

Source: PubMed

3
구독하다