Mobile Phone-Based Joint Angle Measurement for Functional Assessment and Rehabilitation of Proprioception

Quentin Mourcou, Anthony Fleury, Bruno Diot, Céline Franco, Nicolas Vuillerme, Quentin Mourcou, Anthony Fleury, Bruno Diot, Céline Franco, Nicolas Vuillerme

Abstract

Assessment of joint functional and proprioceptive abilities is essential for balance, posture, and motor control rehabilitation. Joint functional ability refers to the capacity of movement of the joint. It may be evaluated thereby measuring the joint range of motion (ROM). Proprioception can be defined as the perception of the position and of the movement of various body parts in space. Its role is essential in sensorimotor control for movement acuity, joint stability, coordination, and balance. Its clinical evaluation is commonly based on the assessment of the joint position sense (JPS). Both ROM and JPS measurements require estimating angles through goniometer, scoliometer, laser-pointer, and bubble or digital inclinometer. With the arrival of Smartphones, these costly clinical tools tend to be replaced. Beyond evaluation, maintaining and/or improving joint functional and proprioceptive abilities by training with physical therapy is important for long-term management. This review aims to report Smartphone applications used for measuring and improving functional and proprioceptive abilities. It identifies that Smartphone applications are reliable for clinical measurements and are mainly used to assess ROM and JPS. However, there is lack of studies on Smartphone applications which can be used in an autonomous way to provide physical therapy exercises at home.

References

    1. Grob K. R., Kuster M. S., Higgins S. A., Lloyd D. G., Yata H. Lack of correlation between different measurements of proprioception in the knee. The Journal of Bone & Joint Surgery—British Volume. 2002;84(4):614–618. doi: 10.1302/0301-620x.84b4.11241.
    1. Ribeiro F., Oliveira J. Factors influencing proprioception: what do they reveal? In: Klika V., editor. Biomechanics in Applications. chapter 14. Rijeka, Croatia: InTech; 2011.
    1. Hay L., Bard C., Fleury M., Teasdale N. Availability of visual and proprioceptive afferent messages and postural control in elderly adults. Experimental Brain Research. 1996;108(1):129–139.
    1. Gauchard G. C., Jeandel C., Tessier A., Perrin P. P. Beneficial effect of proprioceptive physical activities on balance control in elderly human subjects. Neuroscience Letters. 1999;273(2):81–84. doi: 10.1016/S0304-3940(99)00615-1.
    1. Hughes C. M. L., Tommasino P., Budhota A., Campolo D. Upper extremity proprioception in healthy aging and stroke populations, and the effects of therapist- and robot-based rehabilitation therapies on proprioceptive function. Frontiers in Human Neuroscience. 2015;9, article 120 doi: 10.3389/fnhum.2015.00120.
    1. Hillier S., Immink M., Thewlis D. Assessing proprioception—a systematic review of possibilities. Neurorehabilitation and Neural Repair. 2015 doi: 10.1177/1545968315573055.
    1. Ozdalga E., Ozdalga A., Ahuja N. The smartphone in medicine: a review of current and potential use among physicians and students. Journal of Medical Internet Research. 2012;14(5, article e128) doi: 10.2196/jmir.1994.
    1. Boulos M. N. K., Wheeler S., Tavares C., Jones R. How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX. BioMedical Engineering Online. 2011;10(1, article 24) doi: 10.1186/1475-925x-10-24.
    1. Zhu R., Zhou Z. A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2004;12(2):295–302. doi: 10.1109/tnsre.2004.827825.
    1. Milani P., Coccetta C. A., Rabini A., Sciarra T., Massazza G., Ferriero G. Mobile smartphone applications for body position measurement in rehabilitation: a review of goniometric tools. PM&R. 2013;6(11):1038–1043. doi: 10.1016/j.pmrj.2014.05.003.
    1. Tousignant-Laflamme Y., Boutin N., Dion A. M., Vallée C.-A. Reliability and criterion validity of two applications of the iPhone to measure cervical range of motion in healthy participants. Journal of NeuroEngineering and Rehabilitation. 2013;10(1, article 69) doi: 10.1186/1743-0003-10-69.
    1. Quek J., Brauer S. G., Treleaven J., Pua Y.-H., Mentiplay B., Clark R. A. Validity and intra-rater reliability of an Android phone application to measure cervical range-of-motion. Measurements. 2014;11, article 65 doi: 10.1186/1743-0003-11-65.
    1. Shin S. H., Ro D. H., Lee O.-S., Oh J. H., Kim S. H. Within-day reliability of shoulder range of motion measurement with a smartphone. Manual Therapy. 2012;17(4):298–304. doi: 10.1016/j.math.2012.02.010.
    1. Werner B. C., Holzgrefe R. E., Griffin J. W., et al. Validation of an innovative method of shoulder range-of-motion measurement using a smartphone clinometer application. Journal of Shoulder and Elbow Surgery. 2014;23(11):e275–e282. doi: 10.1016/j.jse.2014.02.030.
    1. Mitchell K., Gutierrez S. B., Sutton S., Morton S., Morgenthaler A. Reliability and validity of goniometric iPhone applications for the assessment of active shoulder external rotation. Physiotherapy Theory and Practice. 2014;30(7):521–525. doi: 10.3109/09593985.2014.900593.
    1. Oïhénart L., Duc C., Aminian K. iShould: functional evaluation of the shoulder using a smartphone. Gait & Posture. 2012;36(supplement 1):S61–S62. doi: 10.1016/j.gaitpost.2011.10.284.
    1. Johnson L. B., Sumner S., Duong T., et al. Validity and reliability of smartphone magnetometer-based goniometer evaluation of shoulder abduction—a pilot study. Manual Therapy. 2015 doi: 10.1016/j.math.2015.03.004.
    1. Ferriero G., Sartorio F., Foti C., Primavera D., Brigatti E., Vercelli S. Reliability of a new application for smartphones (DrGoniometer) for elbow angle measurement. PM&R. 2011;3(12):1153–1154. doi: 10.1016/j.pmrj.2011.05.014.
    1. Ockendon M., Gilbert R. E. Validation of a novel smartphone accelerometer-based knee goniometer. The Journal of Knee Surgery. 2012;25(4):341–345. doi: 10.1055/s-0031-1299669.
    1. Hambly K., Sibley R., Ockendon M. Level of agreement between a novel smartphone application and a long arm goniometer for the assessment of maximum active knee flexion by an inexperienced tester. International Journal of Physiotherapy and Rehabilitation. 2012;2:1–14.
    1. Jones A., Sealey R., Crowe M., Gordon S. Concurrent validity and reliability of the simple goniometer iPhone app compared with the Universal Goniometer. Physiotherapy Theory and Practice. 2014;30(7):512–516. doi: 10.3109/09593985.2014.900835.
    1. Milanese S., Gordon S., Buettner P., et al. Reliability and concurrent validity of knee angle measurement: smart phone app versus universal goniometer used by experienced and novice clinicians. Manual Therapy. 2014;19(6):569–574. doi: 10.1016/j.math.2014.05.009.
    1. Rwakabayiza S., Pereira L. C. D., Lécureux E., Jolles-Haeberli B. Mesurer l'amplitude articulaire du genou: goniomètre universel ou smartphone? Orthopédie. 2013;411(44):2372–2375.
    1. Bruyneel A.-V., Bridon F. Inclinométrie du genou: comparaison de la reproductibilité d'un outil mécanique et d'une application sur smartphone. Kinésithérapie la Revue. 2015;15(158):74–79.
    1. Jenny J.-Y. Measurement of the knee flexion angle with a smartphone-application is precise and accurate. Journal of Arthroplasty. 2013;28(5):784–787. doi: 10.1016/j.arth.2012.11.013.
    1. Ferriero G., Vercelli S., Sartorio F., et al. Reliability of a smartphone-based goniometer for knee joint goniometry. International Journal of Rehabilitation Research. 2013;36(2):146–151. doi: 10.1097/mrr.0b013e32835b8269.
    1. Jenny J.-Y., Bureggah A., Diesinger Y. Measurement of the knee flexion angle with smartphone applications: which technology is better? Knee Surgery, Sports Traumatology, Arthroscopy. 2015 doi: 10.1007/s00167-015-3537-4.
    1. Andrea F., Luigi V., Daniele M., et al. Smartphone versus knee ligament arthrometer when size does not matter. International Orthopaedics. 2014;38(10):2197–2199. doi: 10.1007/s00264-014-2432-9.
    1. Yoon T.-L., Park K.-M., Choi S.-A., Lee J.-H., Jeong H.-J., Cynn H.-S. A comparison of the reliability of the trochanteric prominence angle test and the alternative method in healthy subjects. Manual Therapy. 2014;19(2):97–101. doi: 10.1016/j.math.2013.07.011.
    1. Peters F. M., Greeff R., Goldstein N., Frey C. T. Improving acetabular cup orientation in total hip arthroplasty by using smartphone technology. Journal of Arthroplasty. 2012;27(7):1324–1330. doi: 10.1016/j.arth.2011.11.014.
    1. Charlton P. C., Mentiplay B. F., Pua Y.-H., Clark R. A. Reliability and concurrent validity of a Smartphone, bubble inclinometer and motion analysis system for measurement of hip joint range of motion. Journal of Science and Medicine in Sport. 2015;18(3):262–267. doi: 10.1016/j.jsams.2014.04.008.
    1. Vohralik S. L., Bowen A. R., Burns J., Hiller C. E., Nightingale E. J. Reliability and validity of a smartphone app to measure joint range. American Journal of Physical Medicine & Rehabilitation. 2015;94(4):325–330. doi: 10.1097/PHM.0000000000000221.
    1. Williams C. M., Caserta A. J., Haines T. P. The TiltMeter app is a novel and accurate measurement tool for the weight bearing lunge test. Journal of Science and Medicine in Sport. 2013;16(5):392–395. doi: 10.1016/j.jsams.2013.02.001.
    1. Kolber M. J., Pizzini M., Robinson A., Yanez D., Hanney W. J. The reliability and concurrent validity of measurements used to quantify lumbar spine mobility: an analysis of an iPhone application and gravity based inclinometry. International Journal of Sports Physical Therapy. 2013;8(2):p. 129.
    1. Izatt M. T., Bateman G. R., Adam C. J. Evaluation of the iPhone with an acrylic sleeve versus the Scoliometer for rib hump measurement in scoliosis. Scoliosis. 2012;7(1, article 14) doi: 10.1186/1748-7161-7-14.
    1. Franko O. I., Bray C., Newton P. O. Validation of a scoliometer smartphone app to assess scoliosis. Journal of Pediatric Orthopaedics. 2012;32(8):e72–e75. doi: 10.1097/BPO.0b013e31826bb109.
    1. Balg F., Juteau M., Theoret C., Svotelis A., Grenier G. Validity and reliability of the iPhone to measure rib hump in scoliosis. Journal of Pediatric Orthopaedics. 2014;34(8):774–779. doi: 10.1097/BPO.0000000000000195.
    1. Qiao J., Xu L., Zhu Z., et al. Inter- and intraobserver reliability assessment of the axial trunk rotation: manual versus smartphone-aided measurement tools. BMC Musculoskeletal Disorders. 2014;15(1, article 343) doi: 10.1186/1471-2474-15-343.
    1. Röijezon U., Clark N. C., Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 1: basic science and principles of assessment and clinical interventions. Manual Therapy. 2015;20(3):368–377. doi: 10.1016/j.math.2015.01.008.
    1. Riemann B. L., Myers J. B., Lephart S. M. Sensorimotor system measurement techniques. Journal of Athletic Training. 2002;37(1):85–98.
    1. Strimpakos N. The assessment of the cervical spine. Part 1: range of motion and proprioception. Journal of Bodywork and Movement Therapies. 2011;15(1):114–124. doi: 10.1016/j.jbmt.2009.06.003.
    1. Goble D. J. Proprioceptive acuity assessment via joint position matching: from basic science to general practice. Physical Therapy. 2010;90(8):1176–1184. doi: 10.2522/ptj.20090399.
    1. Gajdosik R. L., Bohannon R. W. Clinical measurement of range of motion. Review of goniometry emphasizing reliability and validity. Physical Therapy. 1987;67(12):1867–1872.
    1. Treleaven J., Jull G., Sterling M. Dizziness and unsteadiness following whiplash injury: characteristic features and relationship with cervical joint position error. Journal of Rehabilitation Medicine. 2003;35(1):36–43. doi: 10.1080/16501970306109.
    1. Loudon J. K., Ruhl M., Field E. Ability to reproduce head position after whiplash injury. Spine. 1997;22(8):865–868. doi: 10.1097/00007632-199704150-00008.
    1. Revel M., Andre-Deshays C., Minguet M. Cervicocephalic kinesthetic sensibility in patients with cervical pain. Archives of Physical Medicine and Rehabilitation. 1991;72(5):288–291.
    1. Balke M., Liem D., Dedy N., et al. The laser-pointer assisted angle reproduction test for evaluation of proprioceptive shoulder function in patients with instability. Archives of Orthopaedic and Trauma Surgery. 2011;131(8):1077–1084. doi: 10.1007/s00402-011-1285-6.
    1. Yan P., Kurillo G., Bajcsy R., et al. Medicine Meets Virtual Reality 20. Vol. 184. Amsterdam, The Netherlands: IOS Press; 2012. mHealth application for upper extremity range of motion and reachable workspace; pp. 478–480. (Studies in Health Technology and Informatics).
    1. Wu G., Siegler S., Allard P., et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. Journal of Biomechanics. 2002;35(4):543–548. doi: 10.1016/s0021-9290(01)00222-6.
    1. Wu G., Van Der Helm F. C. T., Veeger H. E. J., et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion. Part II. Shoulder, elbow, wrist and hand. Journal of Biomechanics. 2005;38(5):981–992. doi: 10.1016/j.jbiomech.2004.05.042.
    1. Memon M., Wagner S. R., Pedersen C. F., Aysha Beevi F. H., Hansen F. O. Ambient assisted living healthcare frameworks, platforms, standards, and quality attributes. Sensors. 2014;14(3):4312–4341. doi: 10.3390/s140304312.
    1. Jung E.-Y., Kim J.-H., Chung K.-Y., Park D. K. Home health gateway based healthcare services through U-health platform. Wireless Personal Communications. 2013;73(2):207–218. doi: 10.1007/s11277-013-1231-8.
    1. Lamprinakos G., Asanin S., Broden T., et al. An integrated remote monitoring platform towards telehealth and telecare services interoperability. Information Sciences. 2015;308:23–37. doi: 10.1016/j.ins.2015.02.032.
    1. Maass W., Varshney U. Design and evaluation of Ubiquitous Information Systems and use in healthcare. Decision Support Systems. 2012;54(1):597–609. doi: 10.1016/j.dss.2012.08.007.
    1. Kotz D., Avancha S., Baxi A. A privacy framework for mobile health and home-care systems. Proceedings of the 1st ACM Workshop on Security and Privacy in Medical and Home-Care Systems (SPIMACS '09); November 2009; Chicago, Ill, USA. ACM; pp. 1–12.
    1. Algar L., Valdes K. Using smartphone applications as hand therapy interventions. Journal of Hand Therapy. 2014;27(3):254–257. doi: 10.1016/j.jht.2013.12.009.
    1. Varnfield M., Karunanithi M., Lee C.-K., et al. Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: results from a randomised controlled trial. Heart. 2014;100(22):1770–1779. doi: 10.1136/heartjnl-2014-305783.
    1. Layton A. M., Whitworth J., Peacock J., Bartels M. N., Jellen P. A., Thomashow B. M. Feasibility and acceptability of utilizing a smartphone based application to monitor outpatient discharge instruction compliance in cardiac disease patients around discharge from hospitalization. International Journal of Telemedicine and Applications. 2014;2014:10. doi: 10.1155/2014/415868.415868
    1. Marshall A., Medvedev O., Antonov A. Use of a smartphone for improved self-management of pulmonary rehabilitation. International Journal of Telemedicine and Applications. 2008;2008:5. doi: 10.1155/2008/753064.753064
    1. Van Reijen M., Vriend I. I., Zuidema V., van Mechelen W., Verhagen E. A. The implementation effectiveness of the ‘Strengthen your ankle’ smartphone application for the prevention of ankle sprains: design of a randomized controlled trial. BMC Musculoskeletal Disorders. 2014;15(1, article 2) doi: 10.1186/1471-2474-15-2.
    1. Vriend I., Coehoorn I., Verhagen E. Implementation of an app-based neuromuscular training programme to prevent ankle sprains: a process evaluation using the RE-AIM framework. British Journal of Sports Medicine. 2015;49(7):484–488.
    1. Rialle V., Vuillerme N., Franco A. Outline of a general framework for assessing e-health and gerontechnology applications: axiological and diachronic dimensions. Gerontechnology. 2010;9(2, article 245)

Source: PubMed

3
구독하다