Gene-Diet Interaction and Precision Nutrition in Obesity

Yoriko Heianza, Lu Qi, Yoriko Heianza, Lu Qi

Abstract

The rapid rise of obesity during the past decades has coincided with a profound shift of our living environment, including unhealthy dietary patterns, a sedentary lifestyle, and physical inactivity. Genetic predisposition to obesity may have interacted with such an obesogenic environment in determining the obesity epidemic. Growing studies have found that changes in adiposity and metabolic response to low-calorie weight loss diets might be modified by genetic variants related to obesity, metabolic status and preference to nutrients. This review summarized data from recent studies of gene-diet interactions, and discussed integration of research of metabolomics and gut microbiome, as well as potential application of the findings in precision nutrition.

Keywords: gene-diet interactions; obesity; weight loss.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Hruby A., Manson J.E., Qi L., Malik V.S., Rimm E.B., Sun Q., Willett W.C., Hu F.B. Determinants and consequences of obesity. Am. J. Public Health. 2016;106:1656–1662. doi: 10.2105/AJPH.2016.303326.
    1. Walter S., Mejia-Guevara I., Estrada K., Liu S.Y., Glymour M.M. Association of a genetic risk score with body mass index across different birth cohorts. JAMA. 2016;316:63–69. doi: 10.1001/jama.2016.8729.
    1. Kilpelainen T.O., Carli J.F., Skowronski A.A., Sun Q., Kriebel J., Feitosa M.F., Hedman A.K., Drong A.W., Hayes J.E., Zhao J., et al. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels. Nat. Commun. 2016;7:10494. doi: 10.1038/ncomms10494.
    1. Tanaka T., Ngwa J.S., van Rooij F.J., Zillikens M.C., Wojczynski M.K., Frazier-Wood A.C., Houston D.K., Kanoni S., Lemaitre R.N., Luan J., et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am. J. Clin. Nutr. 2013;97:1395–1402. doi: 10.3945/ajcn.112.052183.
    1. Chu A.Y., Workalemahu T., Paynter N.P., Rose L.M., Giulianini F., Tanaka T., Ngwa J.S., Qi Q., Curhan G.C., Rimm E.B., et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Hum. Mol. Genet. 2013;22:1895–1902. doi: 10.1093/hmg/ddt032.
    1. Qi Q., Kilpelainen T.O., Downer M.K., Tanaka T., Smith C.E., Sluijs I., Sonestedt E., Chu A.Y., Renstrom F., Lin X., et al. FTO genetic variants, dietary intake and body mass index: Insights from 177,330 individuals. Hum. Mol. Genet. 2014;23:6961–6972. doi: 10.1093/hmg/ddu411.
    1. Treur J.L., Boomsma D.I., Ligthart L., Willemsen G., Vink J.M. Heritability of high sugar consumption through drinks and the genetic correlation with substance use. Am. J. Clin. Nutr. 2016;104:1144–1150. doi: 10.3945/ajcn.115.127324.
    1. Pallister T., Sharafi M., Lachance G., Pirastu N., Mohney R.P., MacGregor A., Feskens E.J., Duffy V., Spector T.D., Menni C. Food preference patterns in a UK twin cohort. Twin Res. Hum. Genet. 2015;18:793–805. doi: 10.1017/thg.2015.69.
    1. Speliotes E.K., Willer C.J., Berndt S.I., Monda K.L., Thorleifsson G., Jackson A.U., Lango Allen H., Lindgren C.M., Luan J., Magi R., et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 2010;42:937–948. doi: 10.1038/ng.686.
    1. Fall T., Ingelsson E. Genome-wide association studies of obesity and metabolic syndrome. Mol. Cell. Endocrinol. 2014;382:740–757. doi: 10.1016/j.mce.2012.08.018.
    1. Locke A.E., Kahali B., Berndt S.I., Justice A.E., Pers T.H., Day F.R., Powell C., Vedantam S., Buchkovich M.L., Yang J., et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. doi: 10.1038/nature14177.
    1. Grishkevich V., Yanai I. The genomic determinants of genotype x environment interactions in gene expression. Trends Genet. 2013;29:479–487. doi: 10.1016/j.tig.2013.05.006.
    1. Kettunen J., Demirkan A., Wurtz P., Draisma H.H., Haller T., Rawal R., Vaarhorst A., Kangas A.J., Lyytikainen L.P., Pirinen M., et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 2016;7:11122. doi: 10.1038/ncomms11122.
    1. Burkhardt R., Kirsten H., Beutner F., Holdt L.M., Gross A., Teren A., Tonjes A., Becker S., Krohn K., Kovacs P., et al. Integration of genome-wide SNP data and gene-expression profiles reveals six novel loci and regulatory mechanisms for amino acids and acylcarnitines in whole blood. PLoS Genet. 2015;11:e1005510. doi: 10.1371/journal.pgen.1005510.
    1. Demirkan A., Henneman P., Verhoeven A., Dharuri H., Amin N., van Klinken J.B., Karssen L.C., de Vries B., Meissner A., Goraler S., et al. Insight in genome-wide association of metabolite quantitative traits by exome sequence analyses. PLoS Genet. 2015;11:e1004835. doi: 10.1371/journal.pgen.1004835.
    1. Bonder M.J., Kurilshikov A., Tigchelaar E.F., Mujagic Z., Imhann F., Vila A.V., Deelen P., Vatanen T., Schirmer M., Smeekens S.P., et al. The effect of host genetics on the gut microbiome. Nat. Genet. 2016;48:1407–1412. doi: 10.1038/ng.3663.
    1. Turpin W., Espin-Garcia O., Xu W., Silverberg M.S., Kevans D., Smith M.I., Guttman D.S., Griffiths A., Panaccione R., Otley A., et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 2016;48:1413–1417. doi: 10.1038/ng.3693.
    1. Wang J., Thingholm L.B., Skieceviciene J., Rausch P., Kummen M., Hov J.R., Degenhardt F., Heinsen F.A., Ruhlemann M.C., Szymczak S., et al. Genome-wide association analysis identifies variation in vitamin d receptor and other host factors influencing the gut microbiota. Nat. Genet. 2016;48:1396–1406. doi: 10.1038/ng.3695.
    1. Sonnenburg J.L., Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535:56–64. doi: 10.1038/nature18846.
    1. Scott R.A., Lagou V., Welch R.P., Wheeler E., Montasser M.E., Luan J., Magi R., Strawbridge R.J., Rehnberg E., Gustafsson S., et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. 2012;44:991–1005. doi: 10.1038/ng.2385.
    1. Fuchsberger C., Flannick J., Teslovich T.M., Mahajan A., Agarwala V., Gaulton K.J., Ma C., Fontanillas P., Moutsianas L., McCarthy D.J., et al. The genetic architecture of type 2 diabetes. Nature. 2016;536:41–47. doi: 10.1038/nature18642.
    1. Manolio T.A., Collins F.S., Cox N.J., Goldstein D.B., Hindorff L.A., Hunter D.J., McCarthy M.I., Ramos E.M., Cardon L.R., Chakravarti A., et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–753. doi: 10.1038/nature08494.
    1. Qi L. Gene-diet interaction and weight loss. Curr. Opin. Lipidol. 2014;25:27–34. doi: 10.1097/MOL.0000000000000037.
    1. Qi L. Gene-diet interactions in complex disease: Current findings and relevance for public health. Curr. Nutr. Rep. 2012;1:222–227. doi: 10.1007/s13668-012-0029-8.
    1. Qi L., Cho Y.A. Gene-environment interaction and obesity. Nutr. Rev. 2008;66:684–694. doi: 10.1111/j.1753-4887.2008.00128.x.
    1. Franks P.W., Pare G. Putting the genome in context: Gene-environment interactions in type 2 diabetes. Curr. Diabetes Rep. 2016;16:57. doi: 10.1007/s11892-016-0758-y.
    1. Hunter D.J. Gene-environment interactions in human diseases. Nat. Rev. Genet. 2005;6:287–298. doi: 10.1038/nrg1578.
    1. Fabbrini E., Yoshino J., Yoshino M., Magkos F., Tiemann Luecking C., Samovski D., Fraterrigo G., Okunade A.L., Patterson B.W., Klein S. Metabolically normal obese people are protected from adverse effects following weight gain. J. Clin. Investig. 2015;125:787–795. doi: 10.1172/JCI78425.
    1. Heianza Y., Arase Y., Tsuji H., Fujihara K., Saito K., Hsieh S.D., Tanaka S., Kodama S., Hara S., Sone H. Metabolically healthy obesity, presence or absence of fatty liver, and risk of type 2 diabetes in japanese individuals: Toranomon hospital health management center study 20 (topics 20) J. Clin. Endocrinol. Metab. 2014;99:2952–2960. doi: 10.1210/jc.2013-4427.
    1. Stefan N., Kantartzis K., Machann J., Schick F., Thamer C., Rittig K., Balletshofer B., Machicao F., Fritsche A., Haring H.U. Identification and characterization of metabolically benign obesity in humans. Arch. Intern. Med. 2008;168:1609–1616. doi: 10.1001/archinte.168.15.1609.
    1. Neeland I.J., Turer A.T., Ayers C.R., Powell-Wiley T.M., Vega G.L., Farzaneh-Far R., Grundy S.M., Khera A., McGuire D.K., de Lemos J.A. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA. 2012;308:1150–1159. doi: 10.1001/2012.jama.11132.
    1. Kramer C.K., Zinman B., Retnakaran R. Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Ann. Intern. Med. 2013;159:758–769. doi: 10.7326/0003-4819-159-11-201312030-00008.
    1. Bell J.A., Kivimaki M., Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes: A meta-analysis of prospective cohort studies. Obes. Rev. 2014;15:504–515. doi: 10.1111/obr.12157.
    1. Roberson L.L., Aneni E.C., Maziak W., Agatston A., Feldman T., Rouseff M., Tran T., Blaha M.J., Santos R.D., Sposito A., et al. Beyond BMI: The “metabolically healthy obese” phenotype & its association with clinical/subclinical cardiovascular disease and all-cause mortality—A systematic review. BMC Public Health. 2014;14:14.
    1. Zheng R., Zhou D., Zhu Y. The long-term prognosis of cardiovascular disease and all-cause mortality for metabolically healthy obesity: A systematic review and meta-analysis. J. Epidemiol. Community Health. 2016;70:1024–1031. doi: 10.1136/jech-2015-206948.
    1. Padwal R., Leslie W.D., Lix L.M., Majumdar S.R. Relationship among body fat percentage, body mass index, and all-cause mortality: A cohort study. Ann. Intern. Med. 2016;164:532–541. doi: 10.7326/M15-1181.
    1. Sahakyan K.R., Somers V.K., Rodriguez-Escudero J.P., Hodge D.O., Carter R.E., Sochor O., Coutinho T., Jensen M.D., Roger V.L., Singh P., et al. Normal-weight central obesity: Implications for total and cardiovascular mortality. Ann. Intern. Med. 2015;163:827–835. doi: 10.7326/M14-2525.
    1. Ried J.S., Jeff M.J., Chu A.Y., Bragg-Gresham J.L., van Dongen J., Huffman J.E., Ahluwalia T.S., Cadby G., Eklund N., Eriksson J., et al. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape. Nat. Commun. 2016;7:13357. doi: 10.1038/ncomms13357.
    1. Qi Q., Chu A.Y., Kang J.H., Jensen M.K., Curhan G.C., Pasquale L.R., Ridker P.M., Hunter D.J., Willett W.C., Rimm E.B., et al. Sugar-sweetened beverages and genetic risk of obesity. N. Engl. J. Med. 2012;367:1387–1396. doi: 10.1056/NEJMoa1203039.
    1. Brunkwall L., Chen Y., Hindy G., Rukh G., Ericson U., Barroso I., Johansson I., Franks P.W., Orho-Melander M., Renstrom F. Sugar-sweetened beverage consumption and genetic predisposition to obesity in 2 swedish cohorts. Am. J. Clin. Nutr. 2016;104:809–815. doi: 10.3945/ajcn.115.126052.
    1. Olsen N.J., Angquist L., Larsen S.C., Linneberg A., Skaaby T., Husemoen L.L., Toft U., Tjonneland A., Halkjaer J., Hansen T., et al. Interactions between genetic variants associated with adiposity traits and soft drinks in relation to longitudinal changes in body weight and waist circumference. Am. J. Clin. Nutr. 2016;104:816–826. doi: 10.3945/ajcn.115.122820.
    1. Qi Q., Chu A.Y., Kang J.H., Huang J., Rose L.M., Jensen M.K., Liang L., Curhan G.C., Pasquale L.R., Wiggs J.L., et al. Fried food consumption, genetic risk, and body mass index: Gene-Diet interaction analysis in three us cohort studies. BMJ. 2014;348:g1610. doi: 10.1136/bmj.g1610.
    1. Qi Q., Li Y., Chomistek A.K., Kang J.H., Curhan G.C., Pasquale L.R., Willett W.C., Rimm E.B., Hu F.B., Qi L. Television watching, leisure time physical activity, and the genetic predisposition in relation to body mass index in women and men. Circulation. 2012;126:1821–1827. doi: 10.1161/CIRCULATIONAHA.112.098061.
    1. Ahmad S., Rukh G., Varga T.V., Ali A., Kurbasic A., Shungin D., Ericson U., Koivula R.W., Chu A.Y., Rose L.M., et al. Gene × physical activity interactions in obesity: Combined analysis of 111,421 individuals of european ancestry. PLoS Genet. 2013;9:e1003607. doi: 10.1371/journal.pgen.1003607.
    1. Tyrrell J., Wood A.R., Ames R.M., Yaghootkar H., Beaumont R.N., Jones S.E., Tuke M.A., Ruth K.S., Freathy R.M., Davey Smith G., et al. Gene-obesogenic environment interactions in the uk biobank study. Int. J. Epidemiol. 2017 doi: 10.1093/ije/dyw337.
    1. Casas-Agustench P., Arnett D.K., Smith C.E., Lai C.Q., Parnell L.D., Borecki I.B., Frazier-Wood A.C., Allison M., Chen Y.D., Taylor K.D., et al. Saturated fat intake modulates the association between an obesity genetic risk score and body mass index in two us populations. J. Acad. Nutr. Diet. 2014;114:1954–1966. doi: 10.1016/j.jand.2014.03.014.
    1. Celis-Morales C., Lyall D.M., Guo Y., Steell L., Llanas D., Ward J., Mackay D.F., Biello S.M., Bailey M.E., Pell J.P., et al. Sleep characteristics modify the association of genetic predisposition with obesity and anthropometric measurements in 119,679 UK biobank participants. Am. J. Clin. Nutr. 2017 doi: 10.3945/ajcn.116.147231.
    1. Malik V.S., Pan A., Willett W.C., Hu F.B. Sugar-sweetened beverages and weight gain in children and adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013;98:1084–1102. doi: 10.3945/ajcn.113.058362.
    1. Te Morenga L., Mallard S., Mann J. Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ. 2012;346:e7492. doi: 10.1136/bmj.e7492.
    1. Zheng Y., Li Y., Huang T., Cheng H.L., Campos H., Qi L. Sugar-sweetened beverage intake, chromosome 9p21 variants, and risk of myocardial infarction in hispanics. Am. J. Clin. Nutr. 2016;103:1179–1184. doi: 10.3945/ajcn.115.107177.
    1. Bray G.A., Popkin B.M. Dietary sugar and body weight: Have we reached a crisis in the epidemic of obesity and diabetes?: Health be damned! Pour on the sugar. Diabetes Care. 2014;37:950–956. doi: 10.2337/dc13-2085.
    1. Guallar-Castillon P., Rodriguez-Artalejo F., Fornes N.S., Banegas J.R., Etxezarreta P.A., Ardanaz E., Barricarte A., Chirlaque M.D., Iraeta M.D., Larranaga N.L., et al. Intake of fried foods is associated with obesity in the cohort of spanish adults from the european prospective investigation into cancer and nutrition. Am. J. Clin. Nutr. 2007;86:198–205.
    1. Corella D., Peloso G., Arnett D.K., Demissie S., Cupples L.A., Tucker K., Lai C.Q., Parnell L.D., Coltell O., Lee Y.C., et al. Apoa2, dietary fat, and body mass index: Replication of a gene-diet interaction in 3 independent populations. Arch. Intern. Med. 2009;169:1897–1906. doi: 10.1001/archinternmed.2009.343.
    1. Nettleton J.A., Follis J.L., Ngwa J.S., Smith C.E., Ahmad S., Tanaka T., Wojczynski M.K., Voortman T., Lemaitre R.N., Kristiansson K., et al. Gene x dietary pattern interactions in obesity: Analysis of up to 68 317 adults of european ancestry. Hum. Mol. Genet. 2015;24:4728–4738. doi: 10.1093/hmg/ddv186.
    1. Kilpelainen T.O., Qi L., Brage S., Sharp S.J., Sonestedt E., Demerath E., Ahmad T., Mora S., Kaakinen M., Sandholt C.H., et al. Physical activity attenuates the influence of FTO variants on obesity risk: A meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 2011;8:e1001116. doi: 10.1371/journal.pmed.1001116.
    1. Young A.I., Wauthier F., Donnelly P. Multiple novel gene-by-environment interactions modify the effect of FTO variants on body mass index. Nat. Commun. 2016;7:12724. doi: 10.1038/ncomms12724.
    1. Zhang T., Zhang H., Li Y., Li S., Fernandez C., Bazzano L., He J., Xue F., Chen W. Long-term impact of temporal sequence from childhood obesity to hyperinsulinemia on adult metabolic syndrome and diabetes: The bogalusa heart study. Sci. Rep. 2017;7:43422. doi: 10.1038/srep43422.
    1. Zhang T., Zhang H., Li Y., Sun D., Li S., Fernandez C., Qi L., Harville E., Bazzano L., He J., et al. Temporal relationship between childhood body mass index and insulin and its impact on adult hypertension: The bogalusa heart study. Hypertension. 2016;68:818–823. doi: 10.1161/HYPERTENSIONAHA.116.07991.
    1. Cecil J.E., Tavendale R., Watt P., Hetherington M.M., Palmer C.N. An obesity-associated FTO gene variant and increased energy intake in children. N. Engl. J. Med. 2008;359:2558–2566. doi: 10.1056/NEJMoa0803839.
    1. Xi B., Shen Y., Zhang M., Liu X., Zhao X., Wu L., Cheng H., Hou D., Lindpaintner K., Liu L., et al. The common rs9939609 variant of the fat mass and obesity-associated gene is associated with obesity risk in children and adolescents of Beijing, China. BMC Med. Genet. 2010;11:107. doi: 10.1186/1471-2350-11-107.
    1. Yang M., Xu Y., Liang L., Fu J., Xiong F., Liu G., Gong C., Luo F., Chen S., Xu C., et al. The effects of genetic variation in FTO rs9939609 on obesity and dietary preferences in chinese han children and adolescents. PLoS ONE. 2014;9:e104574. doi: 10.1371/journal.pone.0104574.
    1. Muller T.D., Hinney A., Scherag A., Nguyen T.T., Schreiner F., Schafer H., Hebebrand J., Roth C.L., Reinehr T. ‘Fat mass and obesity associated’ gene (FTO): No significant association of variant rs9939609 with weight loss in a lifestyle intervention and lipid metabolism markers in german obese children and adolescents. BMC Med. Genet. 2008;9:85. doi: 10.1186/1471-2350-9-85.
    1. Qi Q., Downer M.K., Kilpelainen T.O., Taal H.R., Barton S.J., Ntalla I., Standl M., Boraska V., Huikari V., Kiefte-de Jong J.C., et al. Dietary intake, FTO genetic variants, and adiposity: A combined analysis of over 16,000 children and adolescents. Diabetes. 2015;64:2467–2476. doi: 10.2337/db14-1629.
    1. Foraita R., Gunther F., Gwozdz W., Reisch L.A., Russo P., Lauria F., Siani A., Veidebaum T., Tornaritis M., Iacoviello L., et al. Does the FTO gene interact with the socioeconomic status on the obesity development among young european children? Results from the idefics study. Int. J. Obesity. 2015;39:1–6. doi: 10.1038/ijo.2014.156.
    1. Song J.Y., Song Q.Y., Wang S., Ma J., Wang H.J. Physical activity and sedentary behaviors modify the association between melanocortin 4 receptor gene variant and obesity in chinese children and adolescents. PLoS ONE. 2017;12:e0170062. doi: 10.1371/journal.pone.0170062.
    1. Riedel C., von Kries R., Fenske N., Strauch K., Ness A.R., Beyerlein A. Interactions of genetic and environmental risk factors with respect to body fat mass in children: Results from the alspac study. Obesity. 2013;21:1238–1242. doi: 10.1002/oby.20196.
    1. Lourenco B.H., Qi L., Willett W.C., Cardoso M.A., Team A.S. FTO genotype, vitamin d status, and weight gain during childhood. Diabetes. 2014;63:808–814. doi: 10.2337/db13-1290.
    1. Sacks F.M., Bray G.A., Carey V.J., Smith S.R., Ryan D.H., Anton S.D., McManus K., Champagne C.M., Bishop L.M., Laranjo N., et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 2009;360:859–873. doi: 10.1056/NEJMoa0804748.
    1. Shai I., Schwarzfuchs D., Henkin Y., Shahar D.R., Witkow S., Greenberg I., Golan R., Fraser D., Bolotin A., Vardi H., et al. Weight loss with a low-carbohydrate, mediterranean, or low-fat diet. N. Engl. J. Med. 2008;359:229–241. doi: 10.1056/NEJMoa0708681.
    1. Heianza Y., Ma W., Huang T., Wang T., Zheng Y., Smith S.R., Bray G.A., Sacks F.M., Qi L. Macronutrient intake-associated FGF21 genotype modifies effects of weight-loss diets on 2-year changes of central adiposity and body composition: The pounds lost trial. Diabetes Care. 2016;39:1909–1914. doi: 10.2337/dc16-1111.
    1. Huang T., Huang J., Qi Q., Li Y., Bray G.A., Rood J., Sacks F.M., Qi L. PCSK7 genotype modifies effect of a weight-loss diet on 2-year changes of insulin resistance: The pounds lost trial. Diabetes Care. 2015;38:439–444. doi: 10.2337/dc14-0473.
    1. Huang T., Ley S.H., Zheng Y., Wang T., Bray G.A., Sacks F.M., Qi L. Genetic susceptibility to diabetes and long-term improvement of insulin resistance and beta cell function during weight loss: The preventing overweight using novel dietary strategies (pounds lost) trial. Am. J. Clin. Nutr. 2016;104:198–204. doi: 10.3945/ajcn.115.121186.
    1. Huang T., Qi Q., Li Y., Hu F.B., Bray G.A., Sacks F.M., Williamson D.A., Qi L. FTO genotype, dietary protein, and change in appetite: The preventing overweight using novel dietary strategies trial. Am. J. Clin. Nutr. 2014;99:1126–1130. doi: 10.3945/ajcn.113.082164.
    1. Lin X., Qi Q., Zheng Y., Huang T., Lathrop M., Zelenika D., Bray G.A., Sacks F.M., Liang L., Qi L. Neuropeptide y genotype, central obesity, and abdominal fat distribution: The pounds lost trial. Am. J. Clin. Nutr. 2015;102:514–519. doi: 10.3945/ajcn.115.107276.
    1. Ma W., Huang T., Heianza Y., Wang T., Sun D., Tong J., Williamson D.A., Bray G.A., Sacks F.M., Qi L. Genetic variations of circulating adiponectin levels modulate changes in appetite in response to weight-loss diets. J. Clin. Endocrinol. Metab. 2017;102:316–325. doi: 10.1210/jc.2016-2909.
    1. Ma W., Huang T., Wang M., Zheng Y., Wang T., Heianza Y., Sun D., Smith S.R., Bray G.A., Sacks F.M., et al. Two-year changes in circulating adiponectin, ectopic fat distribution and body composition in response to weight-loss diets: The pounds lost trial. Int. J. Obes. 2016;40:1723–1729. doi: 10.1038/ijo.2016.128.
    1. Ma W., Huang T., Zheng Y., Wang M., Bray G.A., Sacks F.M., Qi L. Weight-loss diets, adiponectin, and changes in cardiometabolic risk in the 2-year pounds lost trial. J. Clin. Endocrinol. Metab. 2016;101:2415–2422. doi: 10.1210/jc.2016-1207.
    1. Mattei J., Qi Q., Hu F.B., Sacks F.M., Qi L. TCF7L2 genetic variants modulate the effect of dietary fat intake on changes in body composition during a weight-loss intervention. Am. J. Clin. Nutr. 2012;96:1129–1136. doi: 10.3945/ajcn.112.038125.
    1. Mirzaei K., Xu M., Qi Q., de Jonge L., Bray G.A., Sacks F., Qi L. Variants in glucose- and circadian rhythm-related genes affect the response of energy expenditure to weight-loss diets: The pounds lost trial. Am. J. Clin. Nutr. 2014;99:392–399. doi: 10.3945/ajcn.113.072066.
    1. Qi Q., Bray G.A., Hu F.B., Sacks F.M., Qi L. Weight-loss diets modify glucose-dependent insulinotropic polypeptide receptor rs2287019 genotype effects on changes in body weight, fasting glucose, and insulin resistance: The preventing overweight using novel dietary strategies trial. Am. J. Clin. Nutr. 2012;95:506–513. doi: 10.3945/ajcn.111.025270.
    1. Qi Q., Bray G.A., Smith S.R., Hu F.B., Sacks F.M., Qi L. Insulin receptor substrate 1 gene variation modifies insulin resistance response to weight-loss diets in a 2-year randomized trial: The preventing overweight using novel dietary strategies (pounds lost) trial. Circulation. 2011;124:563–571. doi: 10.1161/CIRCULATIONAHA.111.025767.
    1. Qi Q., Durst R., Schwarzfuchs D., Leitersdorf E., Shpitzen S., Li Y., Wu H., Champagne C.M., Hu F.B., Stampfer M.J., et al. CETP genotype and changes in lipid levels in response to weight-loss diet intervention in the pounds lost and direct randomized trials. J. Lipid Res. 2015;56:713–721. doi: 10.1194/jlr.P055715.
    1. Qi Q., Xu M., Wu H., Liang L., Champagne C.M., Bray G.A., Sacks F.M., Qi L. IRS1 genotype modulates metabolic syndrome reversion in response to 2-year weight-loss diet intervention: The pounds lost trial. Diabetes Care. 2013;36:3442–3447. doi: 10.2337/dc13-0018.
    1. Qi Q., Zheng Y., Huang T., Rood J., Bray G.A., Sacks F.M., Qi L. Vitamin d metabolism-related genetic variants, dietary protein intake and improvement of insulin resistance in a 2 year weight-loss trial: Pounds lost. Diabetologia. 2015;58:2791–2799. doi: 10.1007/s00125-015-3750-1.
    1. Wang T., Huang T., Zheng Y., Rood J., Bray G.A., Sacks F.M., Qi L. Genetic variation of fasting glucose and changes in glycemia in response to 2-year weight-loss diet intervention: The pounds lost trial. Int. J. Obes. 2016;40:1164–1169. doi: 10.1038/ijo.2016.41.
    1. Xu M., Ng S.S., Bray G.A., Ryan D.H., Sacks F.M., Ning G., Qi L. Dietary fat intake modifies the effect of a common variant in the lipc gene on changes in serum lipid concentrations during a long-term weight-loss intervention trial. J. Nutr. 2015;145:1289–1294. doi: 10.3945/jn.115.212514.
    1. Xu M., Qi Q., Liang J., Bray G.A., Hu F.B., Sacks F.M., Qi L. Genetic determinant for amino acid metabolites and changes in body weight and insulin resistance in response to weight-loss diets: The preventing overweight using novel dietary strategies (pounds lost) trial. Circulation. 2013;127:1283–1289. doi: 10.1161/CIRCULATIONAHA.112.000586.
    1. Zhang X., Qi Q., Bray G.A., Hu F.B., Sacks F.M., Qi L. APOA5 genotype modulates 2-y changes in lipid profile in response to weight-loss diet intervention: The pounds lost trial. Am. J. Clin. Nutr. 2012;96:917–922. doi: 10.3945/ajcn.112.040907.
    1. Zhang X., Qi Q., Liang J., Hu F.B., Sacks F.M., Qi L. Neuropeptide y promoter polymorphism modifies effects of a weight-loss diet on 2-year changes of blood pressure: The preventing overweight using novel dietary strategies trial. Hypertension. 2012;60:1169–1175. doi: 10.1161/HYPERTENSIONAHA.112.197855.
    1. Zhang X., Qi Q., Zhang C., Smith S.R., Hu F.B., Sacks F.M., Bray G.A., Qi L. FTO genotype and 2-year change in body composition and fat distribution in response to weight-loss diets: The pounds lost trial. Diabetes. 2012;61:3005–3011. doi: 10.2337/db11-1799.
    1. Zheng Y., Ceglarek U., Huang T., Li L., Rood J., Ryan D.H., Bray G.A., Sacks F.M., Schwarzfuchs D., Thiery J., et al. Weight-loss diets and 2-y changes in circulating amino acids in 2 randomized intervention trials. Am. J. Clin. Nutr. 2016;103:505–511. doi: 10.3945/ajcn.115.117689.
    1. Zheng Y., Ceglarek U., Huang T., Wang T., Heianza Y., Ma W., Bray G.A., Thiery J., Sacks F.M., Qi L. Plasma taurine, diabetes genetic predisposition, and changes of insulin sensitivity in response to weight-loss diets. J. Clin. Endocrinol. Metab. 2016;101:3820–3826. doi: 10.1210/jc.2016-1760.
    1. Zheng Y., Huang T., Zhang X., Rood J., Bray G.A., Sacks F.M., Qi L. Dietary fat modifies the effects of FTO genotype on changes in insulin sensitivity. J. Nutr. 2015;145:977–982. doi: 10.3945/jn.115.210005.
    1. Johnston B.C., Kanters S., Bandayrel K., Wu P., Naji F., Siemieniuk R.A., Ball G.D., Busse J.W., Thorlund K., Guyatt G., et al. Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. JAMA. 2014;312:923–933. doi: 10.1001/jama.2014.10397.
    1. Morris A.P., Voight B.F., Teslovich T.M., Ferreira T., Segre A.V., Steinthorsdottir V., Strawbridge R.J., Khan H., Grallert H., Mahajan A., et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 2012;44:981–990. doi: 10.1038/ng.2383.
    1. Voight B.F., Scott L.J., Steinthorsdottir V., Morris A.P., Dina C., Welch R.P., Zeggini E., Huth C., Aulchenko Y.S., Thorleifsson G., et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 2010;42:579–589. doi: 10.1038/ng.609.
    1. Lyssenko V., Nagorny C.L., Erdos M.R., Wierup N., Jonsson A., Spegel P., Bugliani M., Saxena R., Fex M., Pulizzi N., et al. Common variant in mtnr1b associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 2009;41:82–88. doi: 10.1038/ng.288.
    1. Bouatia-Naji N., Bonnefond A., Cavalcanti-Proenca C., Sparso T., Holmkvist J., Marchand M., Delplanque J., Lobbens S., Rocheleau G., Durand E., et al. A variant near mtnr1b is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet. 2009;41:89–94. doi: 10.1038/ng.277.
    1. Rung J., Cauchi S., Albrechtsen A., Shen L., Rocheleau G., Cavalcanti-Proenca C., Bacot F., Balkau B., Belisle A., Borch-Johnsen K., et al. Genetic variant near irs1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat. Genet. 2009;41:1110–1115. doi: 10.1038/ng.443.
    1. Zeggini E., Scott L.J., Saxena R., Voight B.F., Marchini J.L., Hu T., de Bakker P.I., Abecasis G.R., Almgren P., Andersen G., et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 2008;40:638–645. doi: 10.1038/ng.120.
    1. Zeggini E., Weedon M.N., Lindgren C.M., Frayling T.M., Elliott K.S., Lango H., Timpson N.J., Perry J.R., Rayner N.W., Freathy R.M., et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–1341. doi: 10.1126/science.1142364.
    1. Scott L.J., Mohlke K.L., Bonnycastle L.L., Willer C.J., Li Y., Duren W.L., Erdos M.R., Stringham H.M., Chines P.S., Jackson A.U., et al. A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants. Science. 2007;316:1341–1345. doi: 10.1126/science.1142382.
    1. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research. Saxena R., Voight B.F., Lyssenko V., Burtt N.P., de Bakker P.I., Chen H., Roix J.J., Kathiresan S., Hirschhorn J.N., et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–1336.
    1. Sladek R., Rocheleau G., Rung J., Dina C., Shen L., Serre D., Boutin P., Vincent D., Belisle A., Hadjadj S., et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–885. doi: 10.1038/nature05616.
    1. Godino J.G., van Sluijs E.M., Marteau T.M., Sutton S., Sharp S.J., Griffin S.J. Lifestyle advice combined with personalized estimates of genetic or phenotypic risk of type 2 diabetes, and objectively measured physical activity: A randomized controlled trial. PLoS Med. 2016;13:e1002185. doi: 10.1371/journal.pmed.1002185.
    1. Courcoulas A.P., Yanovski S.Z., Bonds D., Eggerman T.L., Horlick M., Staten M.A., Arterburn D.E. Long-term outcomes of bariatric surgery: A national institutes of health symposium. JAMA Surg. 2014;149:1323–1329. doi: 10.1001/jamasurg.2014.2440.
    1. Madsbad S., Dirksen C., Holst J.J. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2014;2:152–164. doi: 10.1016/S2213-8587(13)70218-3.
    1. Carlsson L.M., Sjoholm K., Karlsson C., Jacobson P., Andersson-Assarsson J.C., Svensson P.A., Larsson I., Hjorth S., Neovius M., Taube M., et al. Long-term incidence of microvascular disease after bariatric surgery or usual care in patients with obesity, stratified by baseline glycaemic status: A post-hoc analysis of participants from the swedish obese subjects study. Lancet Diabetes Endocrinol. 2017;5:271–279. doi: 10.1016/S2213-8587(17)30061-X.
    1. Hatoum I.J., Greenawalt D.M., Cotsapas C., Reitman M.L., Daly M.J., Kaplan L.M. Heritability of the weight loss response to gastric bypass surgery. J. Clin. Endocrinol. Metab. 2011;96:E1630–E1633. doi: 10.1210/jc.2011-1130.
    1. Rinella E.S., Still C., Shao Y., Wood G.C., Chu X., Salerno B., Gerhard G.S., Ostrer H. Genome-wide association of single-nucleotide polymorphisms with weight loss outcomes after roux-en-y gastric bypass surgery. J. Clin. Endocrinol. Metab. 2013;98:E1131–E1136. doi: 10.1210/jc.2012-3421.
    1. Hatoum I.J., Greenawalt D.M., Cotsapas C., Daly M.J., Reitman M.L., Kaplan L.M. Weight loss after gastric bypass is associated with a variant at 15Q26.1. Am. J. Human Genet. 2013;92:827–834. doi: 10.1016/j.ajhg.2013.04.009.
    1. Livingstone K.M., Celis-Morales C., Papandonatos G.D., Erar B., Florez J.C., Jablonski K.A., Razquin C., Marti A., Heianza Y., Huang T., et al. FTO genotype and weight loss: Systematic review and meta-analysis of 9563 individual participant data from eight randomised controlled trials. BMJ. 2016;354:i4707. doi: 10.1136/bmj.i4707.
    1. The Look AHEAD Research Group Prospective association of a genetic risk score and lifestyle intervention with cardiovascular morbidity and mortality among individuals with type 2 diabetes: The look ahead randomised controlled trial. Diabetologia. 2015;58:1803–1813.
    1. Wang T.J., Larson M.G., Vasan R.S., Cheng S., Rhee E.P., McCabe E., Lewis G.D., Fox C.S., Jacques P.F., Fernandez C., et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011;17:448–453. doi: 10.1038/nm.2307.
    1. Wurtz P., Tiainen M., Makinen V.P., Kangas A.J., Soininen P., Saltevo J., Keinanen-Kiukaanniemi S., Mantyselka P., Lehtimaki T., Laakso M., et al. Circulating metabolite predictors of glycemia in middle-aged men and women. Diabetes Care. 2012;35:1749–1756. doi: 10.2337/dc11-1838.
    1. Cheng S., Rhee E.P., Larson M.G., Lewis G.D., McCabe E.L., Shen D., Palma M.J., Roberts L.D., Dejam A., Souza A.L., et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 2012;125:2222–2231. doi: 10.1161/CIRCULATIONAHA.111.067827.
    1. Shah S.H., Crosslin D.R., Haynes C.S., Nelson S., Turer C.B., Stevens R.D., Muehlbauer M.J., Wenner B.R., Bain J.R., Laferrere B., et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 2012;55:321–330. doi: 10.1007/s00125-011-2356-5.
    1. Park S., Sadanala K.C., Kim E.K. A metabolomic approach to understanding the metabolic link between obesity and diabetes. Mol. Cells. 2015;38:587–596. doi: 10.14348/molcells.2015.0126.
    1. Guasch-Ferré M., Hruby A., Toledo E., Clish C.B., Martínez-González M.A., Salas-Salvadó J., Hu F.B. Metabolomics in prediabetes and diabetes: A systematic review and meta-analysis. Diabetes Care. 2016;39:833–846. doi: 10.2337/dc15-2251.
    1. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., Almeida M., Arumugam M., Batto J.M., Kennedy S., et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546. doi: 10.1038/nature12506.
    1. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484. doi: 10.1038/nature07540.
    1. Zhernakova A., Kurilshikov A., Bonder M.J., Tigchelaar E.F., Schirmer M., Vatanen T., Mujagic Z., Vila A.V., Falony G., Vieira-Silva S., et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352:565–569. doi: 10.1126/science.aad3369.
    1. Cotillard A., Kennedy S.P., Kong L.C., Prifti E., Pons N., Le Chatelier E., Almeida M., Quinquis B., Levenez F., Galleron N., et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–588. doi: 10.1038/nature12480.
    1. Wu G.D., Chen J., Hoffmann C., Bittinger K., Chen Y.Y., Keilbaugh S.A., Bewtra M., Knights D., Walters W.A., Knight R., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–108. doi: 10.1126/science.1208344.
    1. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., Dugar B., Feldstein A.E., Britt E.B., Fu X., Chung Y.M., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922.
    1. Tang W.H., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X., Wu Y., Hazen S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013;368:1575–1584. doi: 10.1056/NEJMoa1109400.
    1. Wang Z., Tang W.H., Buffa J.A., Fu X., Britt E.B., Koeth R.A., Levison B.S., Fan Y., Wu Y., Hazen S.L. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 2014;35:904–910. doi: 10.1093/eurheartj/ehu002.
    1. Walford G.A., Ma Y., Clish C., Florez J.C., Wang T.J., Gerszten R.E., Diabetes Prevention Program Research Group Metabolite profiles of diabetes incidence and intervention response in the diabetes prevention program. Diabetes. 2016;65:1424–1433. doi: 10.2337/db15-1063.
    1. Corella D., Arregui M., Coltell O., Portoles O., Guillem-Saiz P., Carrasco P., Sorli J.V., Ortega-Azorin C., Gonzalez J.I., Ordovas J.M. Association of the LCT-13910C>T polymorphism with obesity and its modulation by dairy products in a mediterranean population. Obesity. 2011;19:1707–1714. doi: 10.1038/oby.2010.320.
    1. Dashti H.S., Follis J.L., Smith C.E., Tanaka T., Garaulet M., Gottlieb D.J., Hruby A., Jacques P.F., Kiefte-de Jong J.C., Lamon-Fava S., et al. Gene-environment interactions of circadian-related genes for cardiometabolic traits. Diabetes Care. 2015;38:1456–1466. doi: 10.2337/dc14-2709.
    1. Smith C.E., Follis J.L., Nettleton J.A., Foy M., Wu J.H., Ma Y., Tanaka T., Manichakul A.W., Wu H., Chu A.Y., et al. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: Meta-Analysis of nine studies in the charge consortium. Mol. Nutr. Food Res. 2015;59:1373–1383. doi: 10.1002/mnfr.201400734.
    1. UK Biobank. [(accessed on 28 March 2017)]; Available online:
    1. Lv J., Yu C., Guo Y., Bian Z., Yang L., Chen Y., Tang X., Zhang W., Qian Y., Huang Y., et al. Adherence to healthy lifestyle and cardiovascular diseases in the chinese population. J. Am. Coll. Cardiol. 2017;69:1116–1125. doi: 10.1016/j.jacc.2016.11.076.

Source: PubMed

3
구독하다