Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial

Martin de Bock, José G B Derraik, Christine M Brennan, Janene B Biggs, Philip E Morgan, Steven C Hodgkinson, Paul L Hofman, Wayne S Cutfield, Martin de Bock, José G B Derraik, Christine M Brennan, Janene B Biggs, Philip E Morgan, Steven C Hodgkinson, Paul L Hofman, Wayne S Cutfield

Abstract

Background: Olive plant leaves (Olea europaea L.) have been used for centuries in folk medicine to treat diabetes, but there are very limited data examining the effects of olive polyphenols on glucose homeostasis in humans.

Objective: To assess the effects of supplementation with olive leaf polyphenols (51.1 mg oleuropein, 9.7 mg hydroxytyrosol per day) on insulin action and cardiovascular risk factors in middle-aged overweight men.

Design: Randomized, double-blinded, placebo-controlled, crossover trial in New Zealand. 46 participants (aged 46.4 ± 5.5 years and BMI 28.0 ± 2.0 kg/m(2)) were randomized to receive capsules with olive leaf extract (OLE) or placebo for 12 weeks, crossing over to other treatment after a 6-week washout. Primary outcome was insulin sensitivity (Matsuda method). Secondary outcomes included glucose and insulin profiles, cytokines, lipid profile, body composition, 24-hour ambulatory blood pressure, and carotid intima-media thickness.

Results: Treatment evaluations were based on the intention-to-treat principle. All participants took >96% of prescribed capsules. OLE supplementation was associated with a 15% improvement in insulin sensitivity (p = 0.024) compared to placebo. There was also a 28% improvement in pancreatic β-cell responsiveness (p = 0.013). OLE supplementation also led to increased fasting interleukin-6 (p = 0.014), IGFBP-1 (p = 0.024), and IGFBP-2 (p = 0.015) concentrations. There were however, no effects on interleukin-8, TNF-α, ultra-sensitive CRP, lipid profile, ambulatory blood pressure, body composition, carotid intima-media thickness, or liver function.

Conclusions: Supplementation with olive leaf polyphenols for 12 weeks significantly improved insulin sensitivity and pancreatic β-cell secretory capacity in overweight middle-aged men at risk of developing the metabolic syndrome.

Conflict of interest statement

Competing Interests: TECHNZ grants are funded 50% by the MSI, and 50% by a commercial partner following an extensive independent science review process. In this project, the commercial partner was the olive leaf extract manufacturer (Comvita), who supplied the olive leaf extract (OLE) and placebo for this study. The authors have no further patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

Figures

Figure 1. Summary of study’s recruitment process…
Figure 1. Summary of study’s recruitment process and trial execution.
IX indicates timing of assessments. One participant withdrew from the study during stage 1 due to injury, while the two subjects that withdrew after crossover were either lost to follow up or to the developing acne.
Figure 2. Insulin and glucose responses to…
Figure 2. Insulin and glucose responses to oral glucose tolerance tests and respective areas under the curve (AUC), following supplementation with placebo (gray) and olive leaf extract (black).
Data are adjusted means from multivariate models with respective 95% confidence intervals.

References

    1. Fisher P, Ward A (1994) Medicine in Europe: complementary medicine in Europe. BMJ 309: 107–111.
    1. Schmidt K, Jacobs P, Barton A (2002) Cross-cultural differences in GPs’ attitudes towards complementary and alternative medicine: a survey comparing regions of the UK and Germany. Complement Ther Med 10: 141–147.
    1. Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS (2003) Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 26: 1277–1294.
    1. Komaki E, Yamaguchi S, Maru I, Kinoshita M, Kakehi K, et al. (2003) Identification of anti-α-amylase components from olive leaf extracts. Food Sci Technol Res 9: 35–39.
    1. El SN, Karakaya S (2009) Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev 67: 632–638.
    1. de Bock M, Derraik JGB, Cutfield W (2012) Polyphenols and glucose homeostasis in humans. Journal of the Academy of Nutrition and Dietetics 112: 808–815.
    1. Keys A (1995) Mediterranean diet and public health: personal reflections. Am J Clin Nutr 61: 1321S–1323S.
    1. Agostoni CV (2011) Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL-cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), anti-inflammatory properties (ID 1882), contributes to the upper respiratory tract health (ID 3468), can help to maintain a normal function of gastrointestinal tract (3779), and contributes to body defences against external agents (ID 3467) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA journal 9: 2033.2031–2033.2025.
    1. EFSA Panel on Dietetic Products Nutrition (2012) Allergies (2012) Guidance on the scientific requirements for health claims related to appetite ratings, weight management, and blood glucose concentrations. EFSA Journal 10: 2604.
    1. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22: 1462–1470.
    1. Lorenzo C, Haffner SM, Stančáková A, Laakso M (2010) Relation of direct and surrogate measures of insulin resistance to cardiovascular risk factors in nondiabetic finnish offspring of type 2 diabetic individuals. J Clin Endocrinol Metab 95: 5082–5090.
    1. Maki KC, Rains TM, Dicklin MR, Bell M (2010) Repeatability of indices of insulin sensitivity and secretion from standard liquid meal tests in subjects with type 2 diabetes mellitus or normal or impaired fasting glucose. Diabetes Technol Ther 12: 895–900.
    1. Kahn S, Prigeon R, McCulloch D, Boyko E, Bergman R, et al. (1993) Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 42: 1663–1672.
    1. Novotny R, Going S, Teegarden D, Van Loan M, McCabe G, et al. (2007) Hispanic and Asian pubertal girls have higher android/gynoid fat ratio than whites. Obesity 15: 1565–1570.
    1. Wühl E, Witte K, Soergel M, Mehls O, Schaefer F (2002) Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens 20: 1995.
    1. Tardif JC, Lesage F, Harel F, Romeo P, Pressacco J (2011) Imaging biomarkers in atherosclerosis trials. Circ Cardiovasc Imaging 4: 319–333.
    1. Raitakari OT, Juonala M, Kähönen M, Taittonen L, Laitinen T, et al. (2003) Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood. JAMA 290: 2277–2283.
    1. Hagstromer M, Oja P, Sjostrom M (2006) The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr 9: 755–762.
    1. Brazier J, Harper R, Jones N, O’cathain A, Thomas K, et al. (1992) Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ 305: 160.
    1. Maki KC, McKenney JM, Farmer MV, Reeves MS, Dicklin MR (2009) Indices of insulin sensitivity and secretion from a standard liquid meal test in subjects with type 2 diabetes, impaired or normal fasting glucose. Nutr J 8: 22.
    1. Ou H, Cheng J, Yu E, Wu T (2006) Metformin increases insulin sensitivity and plasma beta-endorphin in human subjects. Horm Metab Res 38: 106.
    1. Miyazaki Y, Matsuda M, DeFronzo RA (2002) Dose-response effect of pioglitazone on insulin sensitivity and insulin secretion in type 2 diabetes. Diabetes Care 25: 517–523.
    1. Ferrannini E (1998) Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr Rev 19: 477–490.
    1. Gerich JE (1998) The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocr Rev 19: 491–503.
    1. Derosa G, Franzetti IG, Querci F, Carbone A, Caccarelli L, et al. (2012) Exenatide plus metformin compared with metformin alone on β-cell function in patients with Type 2 diabetes. Diabet Med 29: 1515–1523.
    1. Degn KB, Juhl CB, Sturis J, Jakobsen G, Brock B, et al. (2004) One week’s treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and α-and β-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 53: 1187–1194.
    1. Wainstein J, Ganz T, Boaz M, Bar Dayan Y, Dolev E, et al. (2012) Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J Med Food 15: 605–610.
    1. Kim JH, Bachmann RA, Chen J (2009) Interleukin‐6 and Insulin Resistance. Vitam Horm 80: 613–633.
    1. Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, et al. (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55: 2688–2697.
    1. Weigert C, Hennige AM, Lehmann R, Brodbeck K, Baumgartner F, et al. (2006) Direct cross-talk of interleukin-6 and insulin signal transduction via insulin receptor substrate-1 in skeletal muscle cells. J Biol Chem 281: 7060–7067.
    1. Wheatcroft SB, Kearney MT, Shah AM, Ezzat VA, Miell JR, et al. (2007) IGF-binding protein-2 protects against the development of obesity and insulin resistance. Diabetes 56: 285–294.
    1. Heald A, Cruickshank J, Riste L, Cade J, Anderson S, et al. (2001) Close relation of fasting insulin-like growth factor binding protein-1 (IGFBP-1) with glucose tolerance and cardiovascular risk in two populations. Diabetologia 44: 333–339.
    1. Perrinjaquet‐Moccetti T, Busjahn A, Schmidlin C, Schmidt A, Bradl B, et al. (2008) Food supplementation with an olive (Olea europaea L.) leaf extract reduces blood pressure in borderline hypertensive monozygotic twins. Phytother Res 22: 1239–1242.
    1. Susalit E, Agus N, Effendi I, Tjandrawinata RR, Nofiarny D, et al. (2011) Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with Captopril. Phytomedicine 18: 251–258.
    1. Fonolla J, Diaz-Ropero P, de la Fuente E, Quintela J (2010) One-month consumpotion of an olive leaf extract enhances cardivascular status in hypercholesterolemic subjects [abstract]. Atheroscler Suppl 11: 182 (MS358).

Source: PubMed

3
구독하다