A survey of modulation of gut microbiota by dietary polyphenols

Montserrat Dueñas, Irene Muñoz-González, Carolina Cueva, Ana Jiménez-Girón, Fernando Sánchez-Patán, Celestino Santos-Buelga, M Victoria Moreno-Arribas, Begoña Bartolomé, Montserrat Dueñas, Irene Muñoz-González, Carolina Cueva, Ana Jiménez-Girón, Fernando Sánchez-Patán, Celestino Santos-Buelga, M Victoria Moreno-Arribas, Begoña Bartolomé

Abstract

Dietary polyphenols present in a broad range of plant foods have been related to beneficial health effects. This review aims to update the current information about the modulation of the gut microbiota by dietary phenolic compounds, from a perspective based on the experimental approaches used. After referring to general aspects of gut microbiota and dietary polyphenols, studies related to this topic are presented according to their experimental design: batch culture fermentations, gastrointestinal simulators, animal model studies, and human intervention studies. In general, studies evidence that dietary polyphenols may contribute to the maintenance of intestinal health by preserving the gut microbial balance through the stimulation of the growth of beneficial bacteria (i.e., lactobacilli and bifidobacteria) and the inhibition of pathogenic bacteria, exerting prebiotic-like effects. Combination of in vitro and in vivo models could help to understand the underlying mechanisms in the polyphenols-microbiota-host triangle and elucidate the implications of polyphenols on human health. From a technological point of view, supplementation with rich-polyphenolic stuffs (phenolic extracts, phenolic-enriched fractions, etc.) could be an effective option to improve health benefits of functional foods such as the case of dairy fermented foods.

Figures

Figure 1
Figure 1
Common phenolic compounds in food.

References

    1. Power S. E., O'Toole P. W., Stanton C., Ross R. P., Fitzgerald G. F. Intestinal microbiota, diet and health. British Journal of Nutrition. 2014;111(3):387–402. doi: 10.1017/S0007114513002560.
    1. De Cruz P., Prideaux L., Wagner J., et al. Characterization of the gastrointestinal microbiota in health and inflammatory bowel disease. Inflammatory Bowel Diseases. 2012;18(2):372–390. doi: 10.1002/ibd.21751.
    1. Kramer A., Bekeschus S., Bröker B. M., Schleibinger H., Razavi B., Assadian O. Maintaining health by balancing microbial exposure and prevention of infection: the hygiene hypothesis versus the hypothesis of early immune challenge. Journal of Hospital Infection. 2013;83(1):S29–S34. doi: 10.1016/S0195-6701(13)60007-9.
    1. Rescigno M. Intestinal microbiota and its effects on the immune system. Cellular Microbiology. 2014;16(7):1004–1013.
    1. Hertog M. G. L., Feskens E. J. M., Hollman P. C. H., Katan M. B., Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. The Lancet. 1993;342(8878):1007–1011. doi: 10.1016/0140-6736(93)92876-U.
    1. Arts I. C. W., Hollman P. C. H. Polyphenols and disease risk in epidemiologic studies. The American Journal of Clinical Nutrition. 2009;81(1):317S–325S.
    1. del Rio D., Rodriguez-Mateos A., Spencer J. P. E., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling. 2013;18(14):1818–1892. doi: 10.1089/ars.2012.4581.
    1. Perez-Vizcaino F., Duarte J. Flavonols and cardiovascular disease. Molecular Aspects of Medicine. 2010;31(6):478–494. doi: 10.1016/j.mam.2010.09.002.
    1. Spencer J. P. E., Vafeiadou K., Williams R. J., Vauzour D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Molecular Aspects of Medicine. 2012;33(1):83–97. doi: 10.1016/j.mam.2011.10.016.
    1. Laparra J. M., Sanz Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacological Research. 2010;61(3):219–225. doi: 10.1016/j.phrs.2009.11.001.
    1. He X., Marco M. L., Slupsky C. M. Emerging aspects of food and nutrition on gut microbiota. Journal of Agricultural and Food Chemistry. 2013;61(40):9559–9574. doi: 10.1021/jf4029046.
    1. Hervert-Hernández D., Goñi I. Dietary polyphenols and human gut microbiota: a review. Food Reviews International. 2011;27(2):154–169. doi: 10.1080/87559129.2010.535233.
    1. Tuohy K. M., Conterno L., Gasperotti M., Viola R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. Journal of Agricultural and Food Chemistry. 2012;60(36):8776–8782. doi: 10.1021/jf2053959.
    1. Etxeberria U., Fernández-Quintela A., Milagro F. I., Aguirre L., Martínez J. A., Portillo M. P. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. Journal of Agricultural and Food Chemistry. 2013;61(40):9517–9533. doi: 10.1021/jf402506c.
    1. Cardona F., Andrés-Lacueva C., Tulipani S., Tinahones F. J., Queipo-Ortuño M. I. Benefits of polyphenols on gut microbiota and implications in human health. Journal of Nutritional Biochemistry. 2013;24(8):1415–1422. doi: 10.1016/j.jnutbio.2013.05.001.
    1. Selma M. V., Espín J. C., Tomás-Barberán F. A. Interaction between phenolics and gut microbiota: role in human health. Journal of Agricultural and Food Chemistry. 2009;57(15):6485–6501. doi: 10.1021/jf902107d.
    1. Requena T., Monagas M., Pozo-Bayón M. A., et al. Perspectives of the potential implications of wine polyphenols on human oral and gut microbiota. Trends in Food Science & Technology. 2010;21(7):332–344. doi: 10.1016/j.tifs.2010.04.004.
    1. Van Duynhoven J., Vaughan E. E., van Dorsten F., et al. Interactions of black tea polyphenols with human gut microbiota: implications for gut and cardiovascular health1-4. The American Journal of Clinical Nutrition. 2013;98(6):1631S–1641S. doi: 10.3945/ajcn.113.058263.
    1. Moco S., Martin F.-P. J., Rezzi S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. Journal of Proteome Research. 2012;11(10):4781–4790. doi: 10.1021/pr300581s.
    1. Buddington R. K., Sangild P. T. Companion animals symposium: development of the mammalian gastrointestinal tract, the resident microbiota, and the role of diet in early life. Journal of Animal Science. 2011;89(5):1506–1519. doi: 10.2527/jas.2010-3705.
    1. Tiihonen K., Ouwehand A. C., Rautonen N. Human intestinal microbiota and healthy ageing. Ageing Research Reviews. 2010;9(2):107–116. doi: 10.1016/j.arr.2009.10.004.
    1. Mariat D., Firmesse O., Levenez F., et al. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology. 2009;9, article 123 doi: 10.1186/1471-2180-9-123.
    1. Arumugam M., Raes J., Pelletier E., et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. doi: 10.1038/nature09944.
    1. Wu G. D., Chen J., Hoffmann C., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–108. doi: 10.1126/science.1208344.
    1. Jeffery I. B., Claesson M. J., O'Toole P. W., Shanahan F. Categorization of the gut microbiota: enterotypes or gradients? Nature Reviews Microbiology. 2012;10(9):591–592. doi: 10.1038/nrmicro2861.
    1. de Vos W. M., Nieuwdorp M. Genomics: a gut prediction. Nature. 2013;498(7452):48–49. doi: 10.1038/nature12251.
    1. Eckburg P. B., Bik E. M., Bernstein C. N., et al. Microbiology: diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–1638. doi: 10.1126/science.1110591.
    1. Zoetendal E. G., Collier C. T., Koike S., Mackie R. I., Gaskins H. R. Molecular ecological analysis of the gastrointestinal microbiota: a review. Journal of Nutrition. 2004;134(2):465–472.
    1. Fraher M. H., O'Toole P. W., Quigley E. M. M. Techniques used to characterize the gut microbiota: a guide for the clinician. Nature Reviews Gastroenterology and Hepatology. 2012;9(6):312–322. doi: 10.1038/nrgastro.2012.44.
    1. Kemperman R. A., Bolca S., Roger L. C., Vaughan E. E. Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology. 2010;156(11):3224–3231. doi: 10.1099/mic.0.042127-0.
    1. Kemperman R. A., Gross G., Mondot S., et al. Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Research International. 2013;53(2):659–669. doi: 10.1016/j.foodres.2013.01.034.
    1. Clifford M. N. Diet-derived phenols in plasma and tissues and their implications for health. Planta Medica. 2004;70(12):1103–1114. doi: 10.1055/s-2004-835835.
    1. Crozier A., del Rio D., Clifford M. N. Bioavailability of dietary flavonoids and phenolic compounds. Molecular Aspects of Medicine. 2010;31(6):446–467. doi: 10.1016/j.mam.2010.09.007.
    1. Day A. J., Dupont M. S., Ridley S., et al. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Letters. 1998;436(1):71–75. doi: 10.1016/S0014-5793(98)01101-6.
    1. Day A. J., Cañada F. J., Díaz J. C., et al. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters. 2000;468(2-3):166–170. doi: 10.1016/S0014-5793(00)01211-4.
    1. Scalbert A., Williamson G. Dietary intake and bioavailability of polyphenols. Journal of Nutrition. 2000;130(8):2073S–2085S.
    1. Rechner A. R., Kuhnle G., Hu H., et al. The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated metabolites. Free Radical Research. 2002;36(11):1229–1241. doi: 10.1080/1071576021000016472.
    1. Aura A.-M., O'Leary K. A., Williamson G., et al. Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. Journal of Agricultural and Food Chemistry. 2002;50(6):1725–1730. doi: 10.1021/jf0108056.
    1. Aura A.-M. Microbial metabolism of dietary phenolic compounds in the colon. Phytochemistry Reviews. 2008;7(3):407–429. doi: 10.1007/s11101-008-9095-3.
    1. Monagas M., Urpi-Sarda M., Sánchez-Patán F., et al. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food and Function. 2010;1(3):233–253. doi: 10.1039/c0fo00132e.
    1. Williamson G., Clifford M. N. Colonic metabolites of berry polyphenols: the missing link to biological activity? British Journal of Nutrition. 2010;104(3):S48–S66. doi: 10.1017/S0007114510003946.
    1. Jacobs D. M., Gaudier E., van Duynhoven J., Vaughan E. E. Non-digestible food ingredients, colonic microbiota and the impact on gut health and immunity: a role for metabolomics. Current Drug Metabolism. 2009;10(1):41–54. doi: 10.2174/138920009787048383.
    1. Bolca S., Possemiers S., Maervoet V., et al. Microbial and dietary factors associated with the 8-prenylnaringenin producer phenotype: a dietary intervention trial with fifty healthy post-menopausal Caucasian women. British Journal of Nutrition. 2007;98(5):950–959. doi: 10.1017/S0007114507749243.
    1. Tzounis X., Vulevic J., Kuhnle G. G. C., et al. Flavanol monomer-induced changes to the human faecal microflora. British Journal of Nutrition. 2008;99(4):782–792. doi: 10.1017/S0007114507853384.
    1. Hidalgo M., Oruna-Concha M. J., Kolida S., et al. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry. 2012;60(15):3882–3890. doi: 10.1021/jf3002153.
    1. Molan A. L., Lila M. A., Mawson J., De S. In vitro and in vivo evaluation of the prebiotic activity of water-soluble blueberry extracts. World Journal of Microbiology and Biotechnology. 2009;25(7):1243–1249. doi: 10.1007/s11274-009-0011-9.
    1. Bialonska D., Ramnani P., Kasimsetty S. G., Muntha K. R., Gibson G. R., Ferreira D. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. International Journal of Food Microbiology. 2010;140(2-3):175–182. doi: 10.1016/j.ijfoodmicro.2010.03.038.
    1. Mandalari G., Faulks R. M., Bisignano C., Waldron K. W., Narbad A., Wickham M. S. J. In vitro evaluation of the prebiotic properties of almond skins (Amygdalus communis L.) FEMS Microbiology Letters. 2010;304(2):116–122. doi: 10.1111/j.1574-6968.2010.01898.x.
    1. Fogliano V., Corollaro M. L., Vitaglione P., et al. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Molecular Nutrition & Food Research. 2011;55(supplement 1):S44–S55. doi: 10.1002/mnfr.201000360.
    1. Pozuelo M. J., Agis-Torres A., Hervert-Hernández D., et al. Grape antioxidant dietary fiber stimulates Lactobacillus growth in rat cecum. Journal of Food Science. 2012;77(2):H59–H62. doi: 10.1111/j.1750-3841.2011.02520.x.
    1. Cueva C., Sánchez-Patán F., Monagas M., et al. In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiology Ecology. 2013;83(3):792–805. doi: 10.1111/1574-6941.12037.
    1. Sánchez-Patán F., Cueva C., Monagas M., et al. In vitro fermentation of a red wine extract by human gut microbiota: changes in microbial groups and formation of phenolic metabolites. Journal of Agricultural and Food Chemistry. 2012;60(9):2136–2147. doi: 10.1021/jf2040115.
    1. Barroso E., Sánchez-Patán F., Martín-Alvarez P. J., et al. Lactobacillus plantarum IFPL935 favors the initial metabolism of red wine polyphenols when added to a colonic microbiota. Journal of Agricultural and Food Chemistry. 2013;61(42):10163–10172. doi: 10.1021/jf402816r.
    1. Gibson G. R., Cummings J. H., Macfarlane G. T. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Applied and Environmental Microbiology. 1988;54(11):2750–2755.
    1. Molly K., Vande Woestyne M., Verstraete W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology. 1993;39(2):254–258. doi: 10.1007/BF00228615.
    1. Minekus M., Smeets-Peeters M., Bernalier A., et al. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Applied Microbiology and Biotechnology. 1999;53(1):108–114. doi: 10.1007/s002530051622.
    1. De Boever P., Deplancke B., Verstraete W. Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder. Journal of Nutrition. 2000;130(10):2599–2606.
    1. Yang C. S., Wang X., Lu G., Picinich S. C. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nature Reviews Cancer. 2009;9(6):429–439. doi: 10.1038/nrc2641.
    1. Ley R. E., Bäckhed F., Turnbaugh P., Lozupone C. A., Knight R. D., Gordon J. I. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(31):11070–11075. doi: 10.1073/pnas.0504978102.
    1. Hara H., Orita N., Hatano S., et al. Effect of tea polyphenols on fecal flora and fecal metabolic products of pigs. The Journal of Veterinary Medical Science. 1995;57(1):45–49. doi: 10.1292/jvms.57.45.
    1. Ishihara N., Chu D.-C., Akachi S., Juneja L. R. Improvement of intestinal microflora balance and prevention of digestive and respiratory organ diseases in calves by green tea extracts. Livestock Production Science. 2001;68(2-3):217–229. doi: 10.1016/S0301-6226(00)00233-5.
    1. Dolara P., Luceri C., De Filippo C., et al. Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis. 2005;591(1-2):237–246. doi: 10.1016/j.mrfmmm.2005.04.022.
    1. Sembries S., Dongowski G., Mehrländer K., Will F., Dietrich H. Physiological effects of extraction juices from apple, grape, and red beet pomaces in rats. Journal of Agricultural and Food Chemistry. 2006;54(26):10269–10280. doi: 10.1021/jf0618168.
    1. Sembries S., Dongowski G., Jacobasch G., Mehrländer K., Will F., Dietrich H. Effects of dietary fibre-rich juice colloids from apple pomace extraction juices on intestinal fermentation products and microbiota in rats. British Journal of Nutrition. 2003;90(3):607–615. doi: 10.1079/BJN2003925.
    1. Viveros A., Chamorro S., Pizarro M., Arija I., Centeno C., Brenes A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poultry Science. 2011;90(3):566–578. doi: 10.3382/ps.2010-00889.
    1. Smith A. H., Mackie R. I. Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Applied and Environmental Microbiology. 2004;70(2):1104–1115. doi: 10.1128/AEM.70.2.1104-1115.2004.
    1. Massot-Cladera M., Pérez-Berezo T., Franch A., Castell M., Pérez-Cano F. J. Cocoa modulatory effect on rat faecal microbiota and colonic crosstalk. Archives of Biochemistry and Biophysics. 2012;527(2):105–112. doi: 10.1016/j.abb.2012.05.015.
    1. Larrosa M., Yañéz-Gascón M. J., Selma M. V., et al. Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. Journal of Agricultural and Food Chemistry. 2009;57(6):2211–2220. doi: 10.1021/jf803638d.
    1. Molan A.-L., Liu Z., Kruger M. The ability of blackcurrant extracts to positively modulate key markers of gastrointestinal function in rats. World Journal of Microbiology & Biotechnology. 2010;26(10):1735–1743. doi: 10.1007/s11274-010-0352-4.
    1. Lacombe A., Li R. W., Klimis-Zacas D., et al. Lowbush wild blueberries have the potential to modify gut microbiota and xenobiotic metabolism in the rat colon. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0067497.e67497
    1. Saad R., Rizkallah M. R., Aziz R. K. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathogens. 2012;4(1, article 16) doi: 10.1186/1757-4749-4-16.
    1. Van Velzen E. J. J., Westerhuis J. A., van Duynhoven J. P. M., et al. Multilevel data analysis of a crossover designed human nutritional intervention study. Journal of Proteome Research. 2008;7(10):4483–4491. doi: 10.1021/pr800145j.
    1. Okubo T., Ishihara N., Takahashi H., et al. Effects of partially hydrolyzed guar gum intake on human intestinal microflora and its metabolism. Bioscience, Biotechnology and Biochemistry. 1994;58(8):1364–1369. doi: 10.1271/bbb.58.1364.
    1. Mai V., Katki H. A., Harmsen H., et al. Effects of a controlled diet and black tea drinking on the fecalmicroflora composition and the fecal bile acid profile of human volunteers in a double-blinded ramdomized feeding study. The Journal of Nutrition. 2004;134(2):473–478.
    1. Jin J.-S., Touyama M., Hisada T., Benno Y. Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species. Microbiology and Immunology. 2012;56(11):729–739. doi: 10.1111/j.1348-0421.2012.00502.x.
    1. Yamakoshi J., Tokutake S., Kikuchi M., Kubota Y., Konishi H., Mitsuoka T. Effect of proantocyanidin -rich extract from grape seed on human fecal flora and fecalodor. FASEB Journal. 2001;15(4):p. A633.
    1. Tzounis X., Rodriguez-Mateos A., Vulevic J., Gibson G. R., Kwik-Uribe C., Spencer J. P. E. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. The American Journal of Clinical Nutrition. 2011;93(1):62–72. doi: 10.3945/ajcn.110.000075.
    1. Queipo-Ortuño M. I., Boto-Ordóñez M., Murri M., et al. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. American Journal of Clinical Nutrition. 2012;95(6):1323–1334. doi: 10.3945/ajcn.111.027847.
    1. Shinohara K., Ohashi Y., Kawasumi K., Terada A., Fujisawa T. Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe. 2010;16(5):510–515. doi: 10.1016/j.anaerobe.2010.03.005.
    1. Gill C. I. R., Mcdougall G. J., Glidewell S., et al. Profiling of phenols in human fecal water after raspberry supplementation. Journal of Agricultural and Food Chemistry. 2010;58(19):10389–10395. doi: 10.1021/jf1017143.
    1. Vendrame S., Guglielmetti S., Riso P., Arioli S., Klimis-Zacas D., Porrini M. Six-week consumption of a wild blueberry powder drink increases Bifidobacteria in the human gut. Journal of Agricultural and Food Chemistry. 2011;59(24):12815–12820. doi: 10.1021/jf2028686.
    1. Guglielmetti S., Fracassetti D., Taverniti V., et al. Differential modulation of human intestinal Bifidobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink. Journal of Agricultural and Food Chemistry. 2013;61(34):8134–8140. doi: 10.1021/jf402495k.
    1. Clavel T., Fallani M., Lepage P., et al. Isoflavones and functional foods alter the dominant intestinal microbiota in postmenopausal women. Journal of Nutrition. 2005;135(12):2786–2792.
    1. Costabile A., Klinder A., Fava F., et al. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. British Journal of Nutrition. 2008;99(1):110–120. doi: 10.1017/S0007114507793923.
    1. Carvalho-Wells A. L., Helmolz K., Nodet C., et al. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. British Journal of Nutrition. 2010;104(9):1353–1356. doi: 10.1017/S0007114510002084.
    1. Cuervo A., Valdés L., Salazar N., et al. Pilot study of diet and microbiota: interactive associations of fibers and polyphenols with human intestinal bacteria. Journal of Agricultural and Food Chemistry. 2014;62(23):5330–5336.
    1. Jaquet M., Rochat I., Moulin J., Cavin C., Bibiloni R. Impact of coffee consumption on the gut microbiota: a human volunteer study. International Journal of Food Microbiology. 2009;130(2):117–121. doi: 10.1016/j.ijfoodmicro.2009.01.011.

Source: PubMed

3
구독하다