Oral intake of a combination of glucosyl hesperidin and caffeine elicits an anti-obesity effect in healthy, moderately obese subjects: a randomized double-blind placebo-controlled trial

Tatsuya Ohara, Koutarou Muroyama, Yoshihiro Yamamoto, Shinji Murosaki, Tatsuya Ohara, Koutarou Muroyama, Yoshihiro Yamamoto, Shinji Murosaki

Abstract

Background: We have previously shown that a combination of glucosyl hesperidin (G-hesperidin) plus caffeine reduces accumulation of body fat, whereas G-hesperidin or caffeine alone shows little effect on high-fat diet-induced obesity in mice. The aim of this study is to evaluate the anti-obesity effect of G-hesperidin plus caffeine on body fat and serum TG in healthy subjects with moderately high body mass index (BMI) and serum TG. Since we considered that there are individual differences in caffeine sensitivity, we conducted dose-finding study of caffeine combined with G-hesperidin.

Methods: Seventy-five healthy subjects with moderately high BMI (24-30 kg/m(2)) and serum TG (100-250 mg/dl) were divided and assigned to 12-week intervention with daily intakes of 500 mg of G-hesperidin with or without 25, 50, or 75 mg of caffeine, or placebo in a randomized double-blind placebo-controlled design .

Results: After intervention, decreases in abdominal fat area (AFA), especially subcutaneous fat area (SFA), were significantly greater in the G-hesperidin with 50-mg caffeine group (AFA:-8.4 ± 21.9 v.s. 16.3 ± 34.1 cm(2); p < 0.05, SFA: -9.3 ± 17.1 v.s. 11.2 ± 18.3 cm(2); p < 0.01) and in the G-hesperidin with 75-mg caffeine group (AFA:-17.0 ± 31.4 v.s. 16.3 ± 34.1 cm(2); p < 0.01, SFA: -12.4 ± 18.7 v.s. 11.2 ± 18.3 cm(2); p < 0.01) than in the placebo group. Fat-decreasing effects of G-hesperidin were enhanced dose-dependently by caffeine addition. BMI decreases were significantly greater in the G-hesperidin with 75-mg caffeine group than in the placebo group (-0.56 ± 0.74 v.s. -0.02 ± 0.58 kg/m(2); p < 0.05). G-hesperidin with/without caffeine had no effect on serum TG (p > 0.05 v.s. placebo).

Conclusions: These data suggested that a combination of 500-mg G-hesperidin with 50- or 75-mg caffeine may be useful for the prevention or treatment of obesity.

Trial registration: UMIN Clinical Trials Registry 000019241 .

Figures

Fig. 1
Fig. 1
Study flowchart. GH glucosyl hesperidin 500 mg, Caf 25, 50, 75 caffeine 25 mg, 50 mg, 75 mg
Fig. 2
Fig. 2
Change in abdominal fat area after 12 weeks of intervention. Data are expressed as Mean ± SD. ♯:p < 0.05, ♯♯:p < 0.01 v.s. Placebo. n = 15 in each of groups except for Placebo (n = 14). GH glucosyl hesperidin 500 mg, Caf 25, 50, 75 caffeine 25 mg, 50 mg, 75 mg
Fig. 3
Fig. 3
Fat-reducing effect of the combination of G-hesperidin and caffeine is partially through the inhibition of hepatic lipogenesis. G6P, Glucose-6-phosphate; G6PD, Glucose-6-phosphate dehydrogenase; ACC, Acetyl-CoA carboxylase; FAS, Fatty acid synthase; VLDL, very low density lipoprotein

References

    1. Hunt KJ, Resendez RG, Williams K, Haffner SM, Stern MP, San Antonio Heart S National cholesterol education program versus World Health Organization metabolic syndrome in relation to all-cause and cardiovascular mortality in the San Antonio Heart Study. Circulation. 2004;110:1251–7. doi: 10.1161/01.CIR.0000140762.04598.F9.
    1. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288:2709–16. doi: 10.1001/jama.288.21.2709.
    1. Ninomiya T, Kubo M, Doi Y, Yonemoto K, Tanizaki Y, Rahman M, et al. Impact of metabolic syndrome on the development of cardiovascular disease in a general Japanese population: the Hisayama study. Stroke. 2007;38:2063–9. doi: 10.1161/STROKEAHA.106.479642.
    1. Davis MA, Ettinger WH, Neuhaus JM, Hauck WW. Sex differences in osteoarthritis of the knee. The role of obesity. Am J Epidemiol. 1988;127:1019–30.
    1. Anderson JJ, Felson DT. Factors associated with osteoarthritis of the knee in the first national Health and Nutrition Examination Survey (HANES I). Evidence for an association with overweight, race, and physical demands of work. Am J Epidemiol. 1988;128:179–89.
    1. Hart DJ, Spector TD. The relationship of obesity, fat distribution and osteoarthritis in women in the general population: the Chingford Study. J Rheumatol. 1993;20:331–5.
    1. Manek NJ, Hart D, Spector TD, MacGregor AJ. The association of body mass index and osteoarthritis of the knee joint: an examination of genetic and environmental influences. Arthritis Rheum. 2003;48:1024–9. doi: 10.1002/art.10884.
    1. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328:1230–5. doi: 10.1056/NEJM199304293281704.
    1. Correa H, Jacoby J. Nutrition and fertility: some iconoclastic results. Am J Clin Nutr. 1978;31:1431–6.
    1. Rowland AS, Baird DD, Long S, Wegienka G, Harlow SD, Alavanja M, et al. Influence of medical conditions and lifestyle factors on the menstrual cycle. Epidemiology. 2002;13:668–74. doi: 10.1097/00001648-200211000-00011.
    1. Mitchell GW, Jr, Rogers J. The influence of weight reduction on amenorrhea in obese women. N Engl J Med. 1953;249:835–7. doi: 10.1056/NEJM195311192492102.
    1. Hijiya H, Miyake T. European Patent 0402049A2. 1991.
    1. Akiyama S, Katsumata S, Suzuki K, Nakaya Y, Ishimi Y, Uehara M. Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes. Biosci Biotechnol Biochem. 2009;73:2779–82. doi: 10.1271/bbb.90576.
    1. Chiba H, Uehara M, Wu J, Wang X, Masuyama R, Suzuki K, et al. Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J Nutr. 2003;133:1892–7.
    1. Mitsuzumi HY-YA, Arai N, Sadakiyo T, Kubota M. Glucosyl hesperidin lowers serum triglyceride level in the rats Fed a high-fat diet through the reduction of hepatic triglyceride and cholesteryl ester. Jpn Pharmacol Ther (in Japanese) 2011;39:727–40.
    1. Miwa Y, Yamada M, Sunayama T, Mitsuzumi H, Tsuzaki Y, Chaen H, et al. Effects of glucosyl hesperidin on serum lipids in hyperlipidemic subjects: preferential reduction in elevated serum triglyceride level. J Nutr Sci Vitaminol (Tokyo) 2004;50:211–8. doi: 10.3177/jnsv.50.211.
    1. Miwa Y, Mitsuzumi H, Sunayama T, Yamada M, Okada K, Kubota M, et al. Glucosyl hesperidin lowers serum triglyceride level in hypertriglyceridemic subjects through the improvement of very low-density lipoprotein metabolic abnormality. J Nutr Sci Vitaminol (Tokyo) 2005;51:460–70. doi: 10.3177/jnsv.51.460.
    1. Miwa Y, Mitsuzumi H, Yamada M, Arai N, Tanabe F, Okada K, et al. Suppression of apolipoprotein B secretion from HepG2 cells by glucosyl hesperidin. J Nutr Sci Vitaminol (Tokyo) 2006;52:223–31. doi: 10.3177/jnsv.52.223.
    1. Hanawa M, Morimoto Y, Yokomizo A, Akaogi A, Mafune E, Tsunoda K, et al. Effect of long-term intake of the tablet containing glucosyl hesperidin on body weight and body fat. J Nutr Food. 2008;11:1–17.
    1. Leijten PA, van Breemen C. The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J Physiol. 1984;357:327–39. doi: 10.1113/jphysiol.1984.sp015502.
    1. Costill DL, Dalsky GP, Fink WJ. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports. 1978;10:155–8.
    1. Astrup A, Buemann B, Christensen NJ, Toubro S, Thorbek G, Victor OJ, et al. The effect of ephedrine/caffeine mixture on energy expenditure and body composition in obese women. Metabolism. 1992;41:686–8. doi: 10.1016/0026-0495(92)90304-S.
    1. Astrup A, Toubro S, Cannon S, Hein P, Breum L, Madsen J. Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr. 1990;51:759–67.
    1. Jeukendrup AE, Randell R. Fat burners: nutrition supplements that increase fat metabolism. Obes Rev. 2011;12:841–51. doi: 10.1111/j.1467-789X.2011.00908.x.
    1. Muroyama K, Murosaki S, Yamamoto Y, Odaka H, Chung HC, Miyoshi M. Anti-obesity effects of a mixture of thiamin, arginine, caffeine, and citric acid in non-insulin dependent diabetic KK mice. J Nutr Sci Vitaminol (Tokyo) 2003;49:56–63. doi: 10.3177/jnsv.49.56.
    1. Muroyama K, Murosaki S, Yamamoto Y, Ishijima A, Toh Y. Effects of intake of a mixture of thiamin, arginine, caffeine, and citric acid on adiposity in healthy subjects with high percent body fat. Biosci Biotechnol Biochem. 2003;67:2325–33. doi: 10.1271/bbb.67.2325.
    1. Ohara T, Muroyama K, Yamamoto Y, Murosaki S. A combination of glucosyl hesperidin and caffeine exhibits an anti-obesity effect by inhibition of hepatic lipogenesis in mice. Phytother Res. 2015;29:310–6. doi: 10.1002/ptr.5258.
    1. Tokunaga K, Matsuzawa Y, Ishikawa K, Tarui S. A novel technique for the determination of body fat by computed tomography. Int J Obes. 1983;7:437–45.
    1. Smith SR, Lovejoy JC, Greenway F, Ryan D, de Jonge L, de la Bretonne J, et al. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism. 2001;50:425–35. doi: 10.1053/meta.2001.21693.
    1. Gormsen LC, Nellemann B, Sorensen LP, Jensen MD, Christiansen JS, Nielsen S. Impact of body composition on very-low-density lipoprotein-triglycerides kinetics. Am J Physiol Endocrinol Metab. 2009;296:E165–73. doi: 10.1152/ajpendo.90675.2008.
    1. Bissonnette S, Salem H, Wassef H, Saint-Pierre N, Tardif A, Baass A, et al. Low density lipoprotein delays clearance of triglyceride-rich lipoprotein by human subcutaneous adipose tissue. J Lipid Res. 2013;54:1466–76. doi: 10.1194/jlr.P023176.
    1. Murosaki S, Lee TR, Muroyama K, Shin ES, Cho SY, Yamamoto Y, et al. A combination of caffeine, arginine, soy isoflavones, and L-carnitine enhances both lipolysis and fatty acid oxidation in 3 T3-L1 and HepG2 cells in vitro and in KK mice in vivo. J Nutr. 2007;137:2252–7.
    1. Lewis GF, Uffelman KD, Szeto LW, Steiner G. Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals. Diabetes. 1993;42:833–42. doi: 10.2337/diab.42.6.833.
    1. Diepvens K, Westerterp KR, Westerterp-Plantenga MS. Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am J Physiol Regul Integr Comp Physiol. 2007;292:R77–85. doi: 10.1152/ajpregu.00832.2005.
    1. Phung OJ, Baker WL, Matthews LJ, Lanosa M, Thorne A, Coleman CI. Effect of green tea catechins with or without caffeine on anthropometric measures: a systematic review and meta-analysis. Am J Clin Nutr. 2010;91:73–81. doi: 10.3945/ajcn.2009.28157.
    1. Smit HJ, Rogers PJ. Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers. Psychopharmacology (Berl) 2000;152:167–73. doi: 10.1007/s002130000506.
    1. Lieberman HR, Wurtman RJ, Emde GG, Roberts C, Coviella IL. The effects of low doses of caffeine on human performance and mood. Psychopharmacology (Berl) 1987;92:308–12. doi: 10.1007/BF00210835.

Source: PubMed

3
구독하다