Metabonomics study of the therapeutic mechanism of Gynostemma pentaphyllum and atorvastatin for hyperlipidemia in rats

Miao Wang, Fei Wang, Yinan Wang, Xiaonan Ma, Min Zhao, Chunjie Zhao, Miao Wang, Fei Wang, Yinan Wang, Xiaonan Ma, Min Zhao, Chunjie Zhao

Abstract

Gynostemma pentaphyllum (GP) is widely used for the treatment of diseases such as hyperlipidemia, fatty liver and obesity in China, and atorvastatin is broadly used as an anti-hyperlipidemia drug. This research focuses on the plasma and liver metabolites in the following four groups of rats: control, a hyperlipidemia model, a hyperlipidemia model treated with GP and a hyperlipidemia model treated with atorvastatin. Using (1)H-NMR-based metabonomics, we elucidated the therapeutic mechanisms of GP and atorvastatin. Orthogonal Partial Least Squares-Discriminant analysis (OPLS-DA) plotting of the metabolic state and analysis of potential biomarkers in the plasma and liver correlated well with the results of biochemical assays. GP can effectively affect lipid metabolism, and it exerts its anti-hyperlipidemia effect by elevating the level of phosphatidylcholine and decreasing the level of trimethylamine N-oxide (TMAO). In contrast, atorvastatin affects hyperlipidemia mainly during lipid metabolism and protein metabolism in vivo.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Typical 600 MHz 1 H-NMR…
Figure 1. Typical 600 MHz 1H-NMR spectra of rat plasma samples.
1.Lipids (VLDL/LDL) 3. Isoleucine 4. Valine 5.3-Hydroxybutyrate 6. Lactate 7. Alanine 8. Lysine 9. Arginine 12. N-Acetyl glycoproteins 14. Glutamate 16. Acetoacetate 17. Acetone 18. Succinate 19. Pyruvate 20. Glutamine 21. Citrate 22. Glutathione 23. Aspartate 24. Creatine 26. Choline 27. Phosphocholine/GPC 28. TMAO 30. Glucose/aminoacids resonances 34.α-Glucose 35. Glycogen 37. Fumarate 38. Tyrosine.
Figure 2. Typical 600 MHz 1 H-NMR…
Figure 2. Typical 600 MHz 1H-NMR spectra of rat liver samples.
1. Lipids (VLDL/LDL) 2. Leucine 3. Isoleucine 4. Valine 5.3-Hydroxybutyrate 6. Lactate 7. Alanine 8. Lysine 9. Arginine 10. Acetate 11. Proline 12. N-Acetyl glycoproteins 13. O-Acetyl glycoproteins 14. Glutamate 15. Methionine 16. Acetoacetate 17. Acetone 18. Succinate 19. Pyruvate 20. Glutamine 21. Citrate 22. Glutathione 23. Aspartate 24. Creatine 25. Phosphatidylcholine 26. Choline 27. Phosphocholine/GPC 28. TMAO 29. Taurine 30. Glucose/aminoacids resonances 31.myo–Inositol 32. Threonine 33. β-Glucose 34.α-Glucose 35. Glycogen 36. Adenosine/Inosine 37. Fumarate 38. Tyrosine 39. Phenylalanine 40. Histidine.
Figure 3. PR analysis of the 1…
Figure 3. PR analysis of the 1H-NMR spectra of rat plasma.
(A): PCA analysis of the spectra of plasma from normal and hyperlipidemia rats (R2X=0.988, Q2=0.885). (B): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal and hyperlipidemia rats (R2X=0.925, R2Y=0.874, Q2=0.642). (C): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal, hyperlipidemia and GP-treated rats (R2X=0.968, R2Y=0.878, Q2=0.538). (D): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal, hyperlipidemia and Atorvastatin-treated rats (R2X=0.909, R2Y=0.522, Q2=0.328). (E): Loading plot of the OPLS-DA analysis of the spectra from the plasma of normal and hyperlipidemia rats.
Figure 4. PR analysis of 1 H-NMR…
Figure 4. PR analysis of 1H-NMR spectra of rat liver tissues.
(A): PCA analysis of the spectra of liver tissues from normal and hyperlipidemia rats (R2X=0.955, Q2=0.782). (B): Scores plot of the OPLS-DA analysis of the spectra from the liver tissues of normal and hyperlipidemia rats (R2X=0.953, R2Y=0.999, Q2=0.827). (C): Scores plot of the OPLS-DA analysis of the spectra from the liver tissues of normal, hyperlipidemia and GP-treated rats (R2X=0.955, R2Y=0.984, Q2=0.608). (D): Scores plot of the OPLS-DA analysis of the spectra from the liver tissues of normal, hyperlipidemia and Atorvastatin-treated rats (R2X=0.931, R2Y=0.945, Q2=0.544). (E): Loading plot of the OPLS-DA analysis of the spectra from the liver tissues of normal and hyperlipidemia rats.
Figure 5. Summary of the metabolic pathways…
Figure 5. Summary of the metabolic pathways related to the metabolites that changed significantly in the hyperlipidemia model.
“↑” and “↓” indicate that the compound is up- and down-regulated compared with the control group.

References

    1. Chen HZ (2004) Current status of blood lipid level and treatment of hyperlipoidemia in Chinese population. Journal of Chinese integrative medicine. Mar 2(2):81-2.
    1. Li N, Wu CF, Xu XY, Liu ZY, Li X et al. (2012) Triterpenes possessing an unprecedented skeleton isolated from hydrolyzate of total saponins from Gynostemma pentaphyllum. Eur J Med Chem 50: 173-178. doi:10.1016/j.ejmech.2012.01.052. PubMed: .
    1. Kao TH, Huang SC, Inbaraj BS, Chen BH (2008) Determination of flavonoids and saponins in Gynostemma pentaphyllum (Thunb.) Makino by liquid chromatography-mass spectrometry. Anal Chim Acta.626(2): 200-211. doi:10.1016/j.aca.2008.07.049. PubMed: .
    1. Liang SX, Sun HW (2002) Determination of six nutritional elements in Chinese herbal medicines by graphite furnace atomic absorption spectrometry. SPECTROSCOPY Spectral Anal. 22(5): 847-849.
    1. Yang X, Zhao Y, Yang Y, Ruan Y (2008) Isolation and characterization of immunostimulatory polysaccharide from an herb tea, Gynostemma pentaphyllum Makino. J Agric Food Chem 56(16): 6905-6909. doi:10.1021/jf801101u. PubMed: .
    1. Huyen VT, Phan DV, Thang P, Ky PT, Hoa NK et al. (2012) Antidiabetic Effects of Add-On Gynostemma pentaphyllum Extract Therapy with Sulfonylureas in Type 2 Diabetic Patients. Complement Alternat Med, 2012: 2012:. PubMed: 23125867
    1. Qin R, Zhang J, Li C, Zhang X, Xiong A et al. (July 2012) Protective effects of gypenosides against fatty liver disease induced by high fat and cholesterol diet and alcohol in rats. Arch Pharm Res July;35(7): 1241-1250. doi:10.1007/s12272-012-0715-5. PubMed: .
    1. la Cour B, Mølgaard P, Yi Z (1995) Traditional Chinese medicine in treatment of hyperlipidaemia. J Ethnopharmacol 46(2): 125-129. doi:10.1016/0378-8741(95)01234-5. PubMed: .
    1. Naoumova RP, Dunn S, Rallidis L, Abu-Muhana O, Neuwirth C et al. ( July 1997) Prolonged inhibition of cholesterol synthesis explains the efficacy of atorvastatin. J Lipid Res July;38(7): 1496-1500. PubMed: .
    1. Watkins SM, German JB (2002) Metabolomics and biochemical profiling in drug discovery and development. Curr Opin Mol Ther Jun;4(3): 224-228. PubMed: .
    1. Wishart DS (2007) Current Progress in computational metabolomics. Brief Bioinform. 8: 279–293. doi:10.1093/bib/bbm030. PubMed: .
    1. Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: Current technologies and future trends. Proteomics. 6: 4716–4723. doi:10.1002/pmic.200600106. PubMed: .
    1. Lindon JC, Holmes E, Nicholson JK (2004) Metabonomics and its role in drug development and disease diagnostics. Expert Rev Mol Diagn 4: 189–199. doi:10.1586/14737159.4.2.189. PubMed: .
    1. Zhang A, Sun H, Wang X (. August 2012) Recent highlights of metabolomics for traditional Chinese medicine. Pharmazie. August;67(8): 667-675. PubMed: .
    1. Zhang Q, Wang GJ, Jiye A, Ma B, Dua Y et al. (2010) Metabonomic profiling of diet-induced hyperlipidaemia in a rat model. Biomarkers. 15(3): 205–216. doi:10.3109/13547500903419049. PubMed: .
    1. Jean CM, Cécile C , Bernadette D, Genevieve A, Denis L et al. (2009) H NMR metabonomics can differentiate the early atherogenic effect of dairy products in hyperlipidemic hamsters1. Atherosclerosis. 206: 127–133. doi:10.1016/j.atherosclerosis.2009.01.040. PubMed: .
    1. Zha WB, Jiye A, Wang GJ, Yan B, Gu SH et al. (2009) Metabonomic characterization of early atherosclerosis in hamsters with induced cholesterol .Biomarkers. 14(6): 372–380. doi:10.1080/13547500903026401. PubMed: .
    1. Zhang Q, Wang GJ, Jiye A , Wu D, Zhu LL et al. (2009) Application of GC/MS-based metabonomic profiling in studying the lipid-regulating effects of Ginkgo biloba extract on diet-induced hyperlipidemia in rats. Acta Pharmacol Sin. 30: 1674–1687. doi:10.1038/aps.2009.173. PubMed: .
    1. Gu Y, Zhang YF, Shi XZ, Li XY , Hong J et al. (2010) Effect of traditional Chinese medicine berberine on type 2 diabetes based on comprehensive metabonomics. Talanta. 81: 766–772. doi:10.1016/j.talanta.2010.01.015. PubMed: .
    1. Liu F, Gan PP , Wu HN , Woo WS,Eng SO et al. (2012) A combination of metabolomics and metallomics studies of urine and serum from hypercholesterolaemic rats after berberine injection. Anal Bioanal Chem 403: 847–856. doi:10.1007/s00216-012-5923-9. PubMed: .
    1. Sun Y, Lian ZQ, Jiang CY, Wang YH, Zhu HB (2012) Beneficial Metabolic Effects of 29,39,59-tri-acetyl-N6- (3-Hydroxylaniline) Adenosine in the Liver and Plasma of Hyperlipidemic Hamsters. PLOS ONE. 7(3): e32115. doi:10.1371/journal.pone.0032115. PubMed: .
    1. Beckonert O, Keun HC, Ebbels TMD, Bundy JG, Holmes E et al. (2007) Metabolic profiling, metabolomics and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2: 2692–2703. doi:10.1038/nprot.2007.376. PubMed: .
    1. Azmi J, Connelly J, Holmes E, Nicholson JK, Shore RF et al. (2005) Characterization of the biochemical effects of 1- nitronaphthalene in rats using global metabolic profiling by NMR spectroscopy and pattern recognition. Biomarkers. 10: 401–416. doi:10.1080/13547500500309259. PubMed: .
    1. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding themetabolic responses of living systems to pathophysiological stimuli viamultivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 29: 1181–1189. doi:10.1080/004982599238047. PubMed: .
    1. Wei L, Liao P, Wu H, Li X, Pei F et al. (2008) Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum. Toxicol Appl Pharmacol 227: 417–429. doi:10.1016/j.taap.2007.11.015. PubMed: .
    1. Gavaghan CL, Wilson ID, Nicholson JK (2002) Physiological variation in metabolic phenotyping and functional genomic studies: use of orthogonal signal correction and PLS-DA. FEBS Lett 530: 191–196. doi:10.1016/S0014-5793(02)03476-2. PubMed: .
    1. Liang X, Chen X, Liang Q, Zhang H, Hu P et al. (2011) Metabonomic study of chinese medicine Shuanglong formula as an effective treatment for myocardial infarction in rats. J Proteome Res 10: 790–799. doi:10.1021/pr1009299. PubMed: .
    1. Barker M, Rayens W (2003) Partial least squares for discrimination. J Chemom. 17: 166–173. doi:10.1002/cem.785.
    1. Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ (1984) Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem 30(4): 426–432. PubMed: .
    1. Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K et al. (2008) The human cerebrospinal fluid metabolome. J Chromatogr B Anal Technol Biomed Life Sci 871: 164–173. doi:10.1016/j.jchromb.2008.05.001. PubMed: .
    1. Fan WM (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc 28: 161–219. doi:10.1016/0079-6565(95)01017-3.
    1. Bollard ME, Garrod S, Holmes E, Lincoln JC, Humpfer E et al. (2000) Highresolution 1H and 1H-13C magic angle spinning NMR spectroscopy of rat liver. Magn Reson Med 44: 201–207. doi:10.1002/1522-2594(200008)44:2. PubMed: .
    1. He Q, Ren P, Kong X, Wu Y, Wu G et al. ( February 2012) Comparison of serum metabolite compositions between obese and lean growing pigs using an NMR-based metabonomic approach. J Nutr Biochem February;23(2): 133-139. doi:10.1016/j.jnutbio.2010.11.007. PubMed: .
    1. Donald V, Judith GV, Pratt Charlotte W (2000) Fundamentals of Biochemistry. John Wiley & Sons, Inc.
    1. Wang Z, Klipfell E, Bennett BJ et al. (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature;472: 57–63. doi:10.1038/nature09922. PubMed: .
    1. Gibellini F, Smith TK (2010) The Kennedy pathway—denovo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 62: 414–428. PubMed: .

Source: PubMed

3
구독하다