Echocardiographic Assessment of Atrial Function: From Basic Mechanics to Specific Cardiac Diseases

Katsuji Inoue, Hiroshi Kawakami, Yusuke Akazawa, Haruhiko Higashi, Takashi Higaki, Osamu Yamaguchi, Katsuji Inoue, Hiroshi Kawakami, Yusuke Akazawa, Haruhiko Higashi, Takashi Higaki, Osamu Yamaguchi

Abstract

The left and right atria serve as buffer chambers to control the flow of venous blood for ventricular filling. If an atrium is absent, blood does not flow effectively into the ventricle, leading to venous blood retention and low cardiac output. The importance of atrial function has become increasingly recognized, because left atrial (LA) function contributes to cardiac performance, and loss of LA function is associated with heart failure. LA volume change has been used for LA function assessment in experimental and clinical studies. In conjunction with LA pressure, the LA pressure-volume relationship provides a better understanding of LA mechanics. LA strain measurement by speckle tracking echocardiography was introduced to evaluate three components of LA function as a (booster) pump, reservoir and conduit. Furthermore, increasing evidence supports the theory that LA reservoir strain has prognostic utility in various cardiac diseases. In this review, we summarize LA contribution to maintain cardiac performance by evaluating LA function with echocardiography according to our experiences and previous reports. Furthermore, we discuss LA dysfunction in challenging cardiac diseases of cardiac amyloidosis and adult congenital heart disease.

Keywords: adult congenital heart disease; atrial fibrillation; cardiac amyloidosis; heart failure; left atrial function; left atrial strain; pressure–volume loop.

Conflict of interest statement

The authors declare no conflict of interest regarding to this review article.

Figures

Figure 1
Figure 1
Left atrial pressure–volume loop curve. (A) Normal left atrial pressure–volume loop consisting of A- and V-loops. The A-loop is produced by LA contraction (booster pump function) and relaxation (early reservoir function), while the V-loop is produced by LA dilatation (late reservoir function) and emptying (conduit function). LA pressure includes the x-trough and v-wave pressures, and the slope connecting the two pressure points (dotted line) on the loop is defined as the LA stiffness index. (B) During afterload increase. When systolic blood pressure increases from 120 to 180 mmHg for instance, left ventricular (LV) systolic and diastolic function worsen due to afterload increase. The A-loop area immediately enlarges to pressure-overloaded LV dysfunction, resulting in the maintenance of stroke volume without a critical elevation in LA pressure. (C) Atrial fibrillation occurrence. Atrial fibrillation promotes atrial myopathy, resulting in LA dilatation, functional impairment and perhaps elevated mean LA pressure. The A-loop disappears during atrial fibrillation, and it mainly depends on ventricular function to maintain cardiac performance. (D) Left atrial stiffening. The pressure–volume loop in a case of cardiac amyloidosis. Abnormal amyloid proteins deposit into the myocardial wall, including the left atrium. LA, left atrial; LV, left ventricular.
Figure 2
Figure 2
Calculation of left atrial strain. LA strain can be analyzed from a non-foreshortened apical four-chamber view. The zero-strain reference is set at end-diastole according to the recommendation by Badano et al. [17], enabling one to obtain LA strain value even in patients with atrial fibrillation. LA reservoir strain (LASr) is calculated as difference between end-diastole and onset of early LV filling, while LA pump strain (LASp) as difference between onset of atrial contraction and onset of late LV filling. LA, left atrial, LV, left ventricular.
Figure 3
Figure 3
Calculation of left atrial dispersion. LA dispersion is defined as the standard deviation of the time to peak positive strain corrected by the R-R interval (%). White arrows indicate contraction durations defined as the time from the R wave on the electrocardiogram to the maximal time of positive deformation in each LA segment. LA, left atrial.
Figure 4
Figure 4
Visual assessment (grading) of left atrial reservoir function. (A) A case of hypertrophic cardiomyopathy. (B,C) Two cases of cardiac amyloidosis. The upper panel in each case is a frame when the LA size is minimized, while the lower panel is a frame when the LA size is maximized. In a patient with hypertrophic cardiomyopathy, the LA dilatation grade (Inoue grade) was preserved (A). In contrast, two patients with cardiac amyloidosis showed abnormal (B) and restricted (C) LA dilatation, indicating LA stiffening. LA, left atrial.
Figure 5
Figure 5
Atrial function in atrial septal defect and Fontan palliation. (A) TEE showing a right-to-left (R-L) shunt from a residual leak after ASD device closure with RA dysfunction. (B) Four-chamber views of end-systole (RAA max) and end-diastole (RAA min). The decreased RA fractional area change (FAC) suggests RA dysfunction. (C) Illustration of the Fontan circulation and the process of impairment of systemic ventricular relaxation after Fontan palliation. (D) Transmitral Doppler early diastolic (E-wave) and late diastolic (A-wave) velocities in a control subject, and the SV peak E-wave and A-wave inflow velocities in a patient with Fontan palliation (EC-TCPC). (E) Representative atrial strain curves in a patient with Fontan palliation (EC-TCPC) and a control subject. Peak negative (red arrow) and positive (white arrow) atrial strain are noted. TEE, transesophageal echocardiography; ASD, atrial septal defect; RA, right atrial; RAA, right atrial area; EC-TCPC, extracardiac total cavopulmonary connection.

References

    1. Hoit B.D. Left atrial size and function: Role in prognosis. J. Am. Coll. Cardiol. 2014;63:493–505. doi: 10.1016/j.jacc.2013.10.055.
    1. Nagueh S.F., Smiseth O.A., Appleton C.P., Byrd B.F., 3rd, Dokainish H., Edvardsen T., Flachskampf F.A., Gillebert T.C., Klein A.L., Lancellotti P., et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016;29:277–314. doi: 10.1016/j.echo.2016.01.011.
    1. Paulus W.J., Tschope C., Sanderson J.E., Rusconi C., Flachskampf F.A., Rademakers F.E., Marino P., Smiseth O.A., De Keulenaer G., Leite-Moreira A.F., et al. How to diagnose diastolic heart failure: A consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur. Heart J. 2007;28:2539–2550. doi: 10.1093/eurheartj/ehm037.
    1. Tabata T., Thomas J.D., Klein A.L. Pulmonary venous flow by doppler echocardiography: Revisited 12 years later. J. Am. Coll. Cardiol. 2003;41:1243–1250. doi: 10.1016/S0735-1097(03)00126-8.
    1. Fukuda N., Oki T., Iuchi A., Tabata T., Yamada H., Ito S., Takeichi N., Shinohara H., Socki T., Shinomiya H., et al. Tricuspid inflow and regurgitant flow dynamics after mitral valve replacement: Differences relating to surgical repair of the tricuspid valve. J. Heart Valve Dis. 1997;6:184–188.
    1. Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am. J. Physiol. 1979;236:H498–H505. doi: 10.1152/ajpheart.1979.236.3.H498.
    1. Russell K., Eriksen M., Aaberge L., Wilhelmsen N., Skulstad H., Remme E.W., Haugaa K.H., Opdahl A., Fjeld J.G., Gjesdal O., et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: A non-invasive index of myocardial work. Eur. Heart J. 2012;33:724–733. doi: 10.1093/eurheartj/ehs016.
    1. Weimar T., Watanabe Y., Kazui T., Lee U.S., Moon M.R., Schuessler R.B., Damiano R.J., Jr. Differential impact of short periods of rapid atrial pacing on left and right atrial mechanical function. Am. J. Physiol. Heart Circ. Physiol. 2012;302:H2583–H2591. doi: 10.1152/ajpheart.01170.2011.
    1. Inoue K., Asanuma T., Masuda K., Sakurai D., Higaki J., Nakatani S. Compensatory increase of left atrial external work to left ventricular dysfunction caused by afterload increase. Am. J. Physiol. Heart Circ. Physiol. 2015;308:H904–H912. doi: 10.1152/ajpheart.00530.2014.
    1. Smiseth O.A., Inoue K. The left atrium: A mirror of ventricular systolic and diastolic function. Eur. Heart J. Cardiovasc. Imaging. 2020;21:270–272. doi: 10.1093/ehjci/jez305.
    1. Barbier P., Solomon S.B., Schiller N.B., Glantz S.A. Left atrial relaxation and left ventricular systolic function determine left atrial reservoir function. Circulation. 1999;100:427–436. doi: 10.1161/01.CIR.100.4.427.
    1. Suga H. Importance of atrial compliance in cardiac performance. Circ. Res. 1974;35:39–43. doi: 10.1161/01.RES.35.1.39.
    1. Braunwald E., Frahm C.J., Ross J., Jr. Studies on Starling’s law of the heart. V. Left ventricular function in man. J. Clin. Investig. 1961;40:1882–1890. doi: 10.1172/JCI104412.
    1. Toma Y., Matsuda Y., Moritani K., Ogawa H., Matsuzaki M., Kusukawa R. Left atrial filling in normal human subjects: Relation between left atrial contraction and left atrial early filling. Cardiovasc. Res. 1987;21:255–259. doi: 10.1093/cvr/21.4.255.
    1. Hoit B.D., Shao Y., Gabel M. Left atrial systolic and diastolic function accompanying chronic rapid pacing-induced atrial failure. Am. J. Physiol. 1998;275:H183–H189. doi: 10.1152/ajpheart.1998.275.1.H183.
    1. Benjamin E.J., Levy D., Vaziri S.M., D’Agostino R.B., Belanger A.J., Wolf P.A. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271:840–844. doi: 10.1001/jama.1994.03510350050036.
    1. Badano L.P., Kolias T.J., Muraru D., Abraham T.P., Aurigemma G., Edvardsen T., D’Hooge J., Donal E., Fraser A.G., Marwick T., et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: A consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging. 2018;19:591–600. doi: 10.1093/ehjci/jey042.
    1. Inoue K., Khan F.H., Remme E.W., Ohte N., Garcia-Izquierdo E., Chetrit M., Monivas-Palomero V., Mingo-Santos S., Andersen O.S., Gude E., et al. Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur. Heart J. Cardiovasc. Imaging. 2021;18:61–70. doi: 10.1093/ehjci/jeaa415.
    1. Reddy Y.N.V., Obokata M., Verbrugge F.H., Lin G., Borlaug B.A. Atrial Dysfunction in Patients With Heart Failure With Preserved Ejection Fraction and Atrial Fibrillation. J. Am. Coll. Cardiol. 2020;76:1051–1064. doi: 10.1016/j.jacc.2020.07.009.
    1. Bandera F., Martone R., Chacko L., Ganesananthan S., Gilbertson J.A., Ponticos M., Lane T., Martinez-Naharro A., Whelan C., Quarta C., et al. Clinical Importance of Left Atrial Infiltration in Cardiac Transthyretin Amyloidosis. JACC Cardiovasc. Imaging. 2022;15:17–29. doi: 10.1016/j.jcmg.2021.06.022.
    1. Lloyd-Jones D.M., Wang T.J., Leip E.P., Larson M.G., Levy D., Vasan R.S., D’Agostino R.B., Massaro J.M., Beiser A., Wolf P.A., et al. Lifetime risk for development of atrial fibrillation: The Framingham Heart Study. Circulation. 2004;110:1042–1046. doi: 10.1161/01.CIR.0000140263.20897.42.
    1. Lip G.Y.H., Brechin C.M., Lane D.A. The global burden of atrial fibrillation and stroke: A systematic review of the epidemiology of atrial fibrillation in regions outside North America and Europe. Chest. 2012;142:1489–1498. doi: 10.1378/chest.11-2888.
    1. Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M., Das S.R., de Ferranti S., Despres J.P., Fullerton H.J., et al. Executive Summary: Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 2016;133:447–454. doi: 10.1161/CIR.0000000000000366.
    1. Wijffels M.C., Kirchhof C.J., Dorland R., Allessie M.A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92:1954–1968. doi: 10.1161/01.CIR.92.7.1954.
    1. Cha Y.M., Redfield M.M., Shen W.K., Gersh B.J. Atrial fibrillation and ventricular dysfunction: A vicious electromechanical cycle. Circulation. 2004;109:2839–2843. doi: 10.1161/01.CIR.0000132470.78896.A8.
    1. Tsang T.S., Barnes M.E., Bailey K.R., Leibson C.L., Montgomery S.C., Takemoto Y., Diamond P.M., Marra M.A., Gersh B.J., Wiebers D.O., et al. Left atrial volume: Important risk marker of incident atrial fibrillation in 1655 older men and women. Mayo Clin. Proc. 2001;76:467–475. doi: 10.4065/76.5.467.
    1. Tsang T.S., Gersh B.J., Appleton C.P., Tajik A.J., Barnes M.E., Bailey K.R., Oh J.K., Leibson C., Montgomery S.C., Seward J.B. Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. J. Am. Coll. Cardiol. 2002;40:1636–1644. doi: 10.1016/S0735-1097(02)02373-2.
    1. Fatema K., Barnes M.E., Bailey K.R., Abhayaratna W.P., Cha S., Seward J.B., Tsang T.S. Minimum vs. maximum left atrial volume for prediction of first atrial fibrillation or flutter in an elderly cohort: A prospective study. Eur. J. Echocardiogr. J. Work. Group Echocardiogr. Eur. Soc. Cardiol. 2009;10:282–286. doi: 10.1093/ejechocard/jen235.
    1. Vlachos K., Letsas K.P., Korantzopoulos P., Liu T., Georgopoulos S., Bakalakos A., Karamichalakis N., Xydonas S., Efremidis M., Sideris A. Prediction of atrial fibrillation development and progression: Current perspectives. World J. Cardiol. 2016;8:267–276. doi: 10.4330/wjc.v8.i3.267.
    1. Zhuang J., Wang Y., Tang K., Li X., Peng W., Liang C., Xu Y. Association between left atrial size and atrial fibrillation recurrence after single circumferential pulmonary vein isolation: A systematic review and meta-analysis of observational studies. Europace. 2012;14:638–645. doi: 10.1093/europace/eur364.
    1. Njoku A., Kannabhiran M., Arora R., Reddy P., Gopinathannair R., Lakkireddy D., Dominic P. Left atrial volume predicts atrial fibrillation recurrence after radiofrequency ablation: A meta-analysis. Europace. 2018;20:33–42. doi: 10.1093/europace/eux013.
    1. Osranek M., Bursi F., Bailey K.R., Grossardt B.R., Brown R.D., Jr., Kopecky S.L., Tsang T.S., Seward J.B. Left atrial volume predicts cardiovascular events in patients originally diagnosed with lone atrial fibrillation: Three-decade follow-up. Eur. Heart J. 2005;26:2556–2561. doi: 10.1093/eurheartj/ehi483.
    1. Kawakami H., Inoue K., Nagai T., Fujii A., Sasaki Y., Shikano Y., Sakuoka N., Miyazaki M., Takasuka Y., Ikeda S., et al. Persistence of left atrial abnormalities despite left atrial volume normalization after successful ablation of atrial fibrillation. J. Arrhythmia. 2021;37:1318–1329. doi: 10.1002/joa3.12624.
    1. Tsang T.S., Abhayaratna W.P., Barnes M.E., Miyasaka Y., Gersh B.J., Bailey K.R., Cha S.S., Seward J.B. Prediction of cardiovascular outcomes with left atrial size: Is volume superior to area or diameter? J. Am. Coll. Cardiol. 2006;47:1018–1023. doi: 10.1016/j.jacc.2005.08.077.
    1. Machino-Ohtsuka T., Seo Y., Ishizu T., Yanaka S., Nakajima H., Atsumi A., Yamamoto M., Kawamura R., Koshino Y., Machino T., et al. Significant improvement of left atrial and left atrial appendage function after catheter ablation for persistent atrial fibrillation. Circ. J. Off. J. Jpn. Circ. Soc. 2013;77:1695–1704. doi: 10.1253/circj.CJ-12-1518.
    1. Sotomi Y., Inoue K., Tanaka K., Toyoshima Y., Oka T., Tanaka N., Nozato Y., Orihara Y., Koyama Y., Iwakura K., et al. Persistent left atrial remodeling after catheter ablation for non-paroxysmal atrial fibrillation is associated with very late recurrence. J. Cardiol. 2015;66:370–376. doi: 10.1016/j.jjcc.2015.03.007.
    1. Walters T.E., Nisbet A., Morris G.M., Tan G., Mearns M., Teo E., Lewis N., Ng A., Gould P., Lee G., et al. Progression of atrial remodeling in patients with high-burden atrial fibrillation: Implications for early ablative intervention. Heart Rhythm. 2016;13:331–339. doi: 10.1016/j.hrthm.2015.10.028.
    1. Oka T., Inoue K., Tanaka K., Ninomiya Y., Hirao Y., Tanaka N., Okada M., Inoue H., Nakamaru R., Koyama Y., et al. Left Atrial Reverse Remodeling After Catheter Ablation of Nonparoxysmal Atrial Fibrillation in Patients With Heart Failure with Reduced Ejection Fraction. Am. J. Cardiol. 2018;122:89–96. doi: 10.1016/j.amjcard.2018.03.026.
    1. Kuppahally S.S., Akoum N., Badger T.J., Burgon N.S., Haslam T., Kholmovski E., Macleod R., McGann C., Marrouche N.F. Echocardiographic left atrial reverse remodeling after catheter ablation of atrial fibrillation is predicted by preablation delayed enhancement of left atrium by magnetic resonance imaging. Am. Heart J. 2010;160:877–884. doi: 10.1016/j.ahj.2010.07.003.
    1. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015;28:1–39.e14. doi: 10.1016/j.echo.2014.10.003.
    1. Nesbitt G.C., Mankad S., Oh J.K. Strain imaging in echocardiography: Methods and clinical applications. Int. J. Cardiovasc. Imaging. 2009;25:9–22. doi: 10.1007/s10554-008-9414-1.
    1. Marwick T.H. Methods used for the assessment of LV systolic function: Common currency or tower of Babel? Heart. 2013;99:1078–1086. doi: 10.1136/heartjnl-2012-303433.
    1. Kuppahally S.S., Akoum N., Burgon N.S., Badger T.J., Kholmovski E.G., Vijayakumar S., Rao S.N., Blauer J., Fish E.N., Dibella E.V., et al. Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: Relationship to left atrial structural remodeling detected by delayed-enhancement MRI. Circ. Cardiovasc. Imaging. 2010;3:231–239. doi: 10.1161/CIRCIMAGING.109.865683.
    1. Watanabe Y., Nakano Y., Hidaka T., Oda N., Kajihara K., Tokuyama T., Uchimura Y., Sairaku A., Motoda C., Fujiwara M., et al. Mechanical and substrate abnormalities of the left atrium assessed by 3-dimensional speckle-tracking echocardiography and electroanatomic mapping system in patients with paroxysmal atrial fibrillation. Heart Rhythm. 2015;12:490–497. doi: 10.1016/j.hrthm.2014.12.007.
    1. Ciuffo L., Tao S., Gucuk Ipek E., Zghaib T., Balouch M., Lima J.A.C., Nazarian S., Spragg D.D., Marine J.E., Berger R.D., et al. Intra-Atrial Dyssynchrony During Sinus Rhythm Predicts Recurrence After the First Catheter Ablation for Atrial Fibrillation. JACC Cardiovasc. Imaging. 2018;12:310–319. doi: 10.1016/j.jcmg.2017.11.028.
    1. Pathan F., Sivaraj E., Negishi K., Rafiudeen R., Pathan S., D’Elia N., Galligan J., Neilson S., Fonseca R., Marwick T.H. Use of Atrial Strain to Predict Atrial Fibrillation After Cerebral Ischemia. JACC Cardiovasc. Imaging. 2018;11:1557–1565. doi: 10.1016/j.jcmg.2017.07.027.
    1. Hirose T., Kawasaki M., Tanaka R., Ono K., Watanabe T., Iwama M., Noda T., Watanabe S., Takemura G., Minatoguchi S. Left atrial function assessed by speckle tracking echocardiography as a predictor of new-onset non-valvular atrial fibrillation: Results from a prospective study in 580 adults. Eur. Heart J.—Cardiovasc. Imaging. 2012;13:243–250. doi: 10.1093/ejechocard/jer251.
    1. Abhayaratna W.P., Fatema K., Barnes M.E., Seward J.B., Gersh B.J., Bailey K.R., Casaclang-Verzosa G., Tsang T.S. Left atrial reservoir function as a potent marker for first atrial fibrillation or flutter in persons > or = 65 years of age. Am. J. Cardiol. 2008;101:1626–1629. doi: 10.1016/j.amjcard.2008.01.051.
    1. Her A.Y., Kim J.Y., Kim Y.H., Choi E.Y., Min P.K., Yoon Y.W., Lee B.K., Hong B.K., Rim S.J., Kwon H.M. Left atrial strain assessed by speckle tracking imaging is related to new-onset atrial fibrillation after coronary artery bypass grafting. Can. J. Cardiol. 2013;29:377–383. doi: 10.1016/j.cjca.2012.06.006.
    1. Imanishi J., Tanaka H., Sawa T., Motoji Y., Miyoshi T., Mochizuki Y., Fukuda Y., Tatsumi K., Matsumoto K., Okita Y., et al. Left atrial booster-pump function as a predictive parameter for new-onset postoperative atrial fibrillation in patients with severe aortic stenosis. Int. J. Cardiovasc. Imaging. 2014;30:295–304. doi: 10.1007/s10554-013-0346-z.
    1. Hubert A., Galand V., Donal E., Pavin D., Galli E., Martins R.P., Leclercq C., Carré F., Schnell F. Atrial function is altered in lone paroxysmal atrial fibrillation in male endurance veteran athletes. Eur. Heart J.—Cardiovasc. Imaging. 2018;19:145–153. doi: 10.1093/ehjci/jex225.
    1. Moreno-Ruiz L.A., Madrid-Miller A., Martinez-Flores J.E., Gonzalez-Hermosillo J.A., Arenas-Fonseca J., Zamorano-Velazquez N., Mendoza-Perez B. Left atrial longitudinal strain by speckle tracking as independent predictor of recurrence after electrical cardioversion in persistent and long standing persistent non-valvular atrial fibrillation. Int. J. Cardiovasc. Imaging. 2019;35:1587–1596. doi: 10.1007/s10554-019-01597-7.
    1. Motoki H., Negishi K., Kusunose K., Popovic Z.B., Bhargava M., Wazni O.M., Saliba W.I., Chung M.K., Marwick T.H., Klein A.L. Global left atrial strain in the prediction of sinus rhythm maintenance after catheter ablation for atrial fibrillation. J. Am. Soc. Echocardiogr. 2014;27:1184–1192. doi: 10.1016/j.echo.2014.08.017.
    1. Yoon Y.E., Oh I.Y., Kim S.A., Park K.H., Kim S.H., Park J.H., Kim J.E., Lee S.P., Kim H.K., Kim Y.J., et al. Echocardiographic Predictors of Progression to Persistent or Permanent Atrial Fibrillation in Patients with Paroxysmal Atrial Fibrillation (E6P Study) J. Am. Soc. Echocardiogr. 2015;28:709–717. doi: 10.1016/j.echo.2015.01.017.
    1. Yasuda R., Murata M., Roberts R., Tokuda H., Minakata Y., Suzuki K., Tsuruta H., Kimura T., Nishiyama N., Fukumoto K., et al. Left atrial strain is a powerful predictor of atrial fibrillation recurrence after catheter ablation: Study of a heterogeneous population with sinus rhythm or atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging. 2015;16:1008–1014. doi: 10.1093/ehjci/jev028.
    1. Mochizuki A., Yuda S., Oi Y., Kawamukai M., Nishida J., Kouzu H., Muranaka A., Kokubu N., Shimoshige S., Hashimoto A., et al. Assessment of left atrial deformation and synchrony by three-dimensional speckle-tracking echocardiography: Comparative studies in healthy subjects and patients with atrial fibrillation. J. Am. Soc. Echocardiogr. 2013;26:165–174. doi: 10.1016/j.echo.2012.10.003.
    1. Kobayashi Y., Okura H., Kobayashi Y., Okawa K., Banba K., Hirohata A., Tamada T., Obase K., Hayashida A., Yoshida K. Assessment of atrial synchrony in paroxysmal atrial fibrillation and impact of pulmonary vein isolation for atrial dyssynchrony and global strain by three-dimensional strain echocardiography. J. Am. Soc. Echocardiogr. 2014;27:1193–1199. doi: 10.1016/j.echo.2014.08.004.
    1. Furukawa A., Ishii K., Hyodo E., Shibamoto M., Komasa A., Nagai T., Tada E., Seino Y., Yoshikawa J. Three-Dimensional Speckle Tracking Imaging for Assessing Left Atrial Function in Hypertensive Patients With Paroxysmal Atrial Fibrillation. Int. Heart J. 2016;57:705–711. doi: 10.1536/ihj.16-121.
    1. Shang Z., Su D., Cong T., Sun Y., Liu Y., Chen N., Yang J. Assessment of left atrial mechanical function and synchrony in paroxysmal atrial fibrillation with two-dimensional speckle tracking echocardiography. Echocardiography. 2017;34:176–183. doi: 10.1111/echo.13434.
    1. Sakabe K., Fukuda N., Fukuda Y., Morishita S., Shinohara H., Tamura Y. Interatrial dyssynchrony on tissue Doppler imaging predicts progression to chronic atrial fibrillation in patients with non-valvular paroxysmal atrial fibrillation. Heart. 2009;95:988–993. doi: 10.1136/hrt.2008.152561.
    1. Kawakami H., Ramkumar S., Nolan M., Wright L., Yang H., Negishi K., Marwick T.H. Left Atrial Mechanical Dispersion Assessed by Strain Echocardiography as an Independent Predictor of New-Onset Atrial Fibrillation: A Case-Control Study. J. Am. Soc. Echocardiogr. 2019;32:1268–1276.e3. doi: 10.1016/j.echo.2019.06.002.
    1. Ma X.X., Boldt L.H., Zhang Y.L., Zhu M.R., Hu B., Parwani A., Belyavskiy E., Radha Krishnan A.K., Krisper M., Kohncke C., et al. Clinical Relevance of Left Atrial Strain to Predict Recurrence of Atrial Fibrillation after Catheter Ablation: A Meta-Analysis. Echocardiography. 2016;33:724–733. doi: 10.1111/echo.13184.
    1. Sarvari S.I., Haugaa K.H., Stokke T.M., Ansari H.Z., Leren I.S., Hegbom F., Smiseth O.A., Edvardsen T. Strain echocardiographic assessment of left atrial function predicts recurrence of atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging. 2016;17:660–667. doi: 10.1093/ehjci/jev185.
    1. Packer M. Effect of catheter ablation on pre-existing abnormalities of left atrial systolic, diastolic, and neurohormonal functions in patients with chronic heart failure and atrial fibrillation. Eur. Heart J. 2019;40:1873–1879. doi: 10.1093/eurheartj/ehz284.
    1. Gibson D.N., Di Biase L., Mohanty P., Patel J.D., Bai R., Sanchez J., Burkhardt J.D., Heywood J.T., Johnson A.D., Rubenson D.S., et al. Stiff left atrial syndrome after catheter ablation for atrial fibrillation: Clinical characterization, prevalence, and predictors. Heart Rhythm. 2011;8:1364–1371. doi: 10.1016/j.hrthm.2011.02.026.
    1. Obokata M., Negishi K., Kurosawa K., Tateno R., Tange S., Arai M., Amano M., Kurabayashi M. Left atrial strain provides incremental value for embolism risk stratification over CHA(2)DS(2)-VASc score and indicates prognostic impact in patients with atrial fibrillation. J. Am. Soc. Echocardiogr. 2014;27:709–716.e4. doi: 10.1016/j.echo.2014.03.010.
    1. Kupczynska K., Michalski B.W., Miskowiec D., Kasprzak J.D., Szymczyk E., Wejner Mik P., Lipiec P. Incremental value of left atrial mechanical dispersion over CHA2 DS2 -VASc score in predicting risk of thrombus formation. Echocardiography. 2018;35:651–660. doi: 10.1111/echo.13899.
    1. Modesto K.M., Dispenzieri A., Cauduro S.A., Lacy M., Khandheria B.K., Pellikka P.A., Belohlavek M., Seward J.B., Kyle R., Tajik A.J., et al. Left atrial myopathy in cardiac amyloidosis: Implications of novel echocardiographic techniques. Eur. Heart J. 2005;26:173–179. doi: 10.1093/eurheartj/ehi040.
    1. Nochioka K., Quarta C.C., Claggett B., Roca G.Q., Rapezzi C., Falk R.H., Solomon S.D. Left atrial structure and function in cardiac amyloidosis. Eur. Heart. J. Cardiovasc. Imaging. 2017;18:1128–1137. doi: 10.1093/ehjci/jex097.
    1. Aquaro G.D., Morini S., Grigoratos C., Taborchi G., Di Bella G., Martone R., Vignini E., Emdin M., Olivotto I., Perfetto F., et al. Electromechanical dissociation of left atrium in patients with Cardiac Amyloidosis by Magnetic Resonance: Prognostic and clinical correlates. Int. J. Cardiol. Heart Vasc. 2020;31:100633. doi: 10.1016/j.ijcha.2020.100633.
    1. Maurer M.S., Schwartz J.H., Gundapaneni B., Elliott P.M., Merlini G., Waddington-Cruz M., Kristen A.V., Grogan M., Witteles R., Damy T., et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N. Engl. J. Med. 2018;379:1007–1016. doi: 10.1056/NEJMoa1805689.
    1. Phelan D., Collier P., Thavendiranathan P., Popovic Z.B., Hanna M., Plana J.C., Marwick T.H., Thomas J.D. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98:1442–1448. doi: 10.1136/heartjnl-2012-302353.
    1. Saito M., Imai M., Wake D., Higaki R., Nakao Y., Sumimoto T., Yokomoto Y., Ogimoto A., Suzuki M., Kawakami H., et al. Semiquantitative assessment of the relative apical sparing pattern of longitudinal strain for cardiac amyloidosis identification. Echocardiography. 2020;37:1422–1429. doi: 10.1111/echo.14833.
    1. Liu D., Hu K., Niemann M., Herrmann S., Cikes M., Stork S., Gaudron P.D., Knop S., Ertl G., Bijnens B., et al. Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy. Circ. Cardiovasc. Imaging. 2013;6:1066–1072. doi: 10.1161/CIRCIMAGING.113.000683.
    1. Rausch K., Scalia G.M., Sato K., Edwards N., Lam A.K., Platts D.G., Chan J. Left atrial strain imaging differentiates cardiac amyloidosis and hypertensive heart disease. Int. J. Cardiovasc. Imaging. 2021;37:81–90. doi: 10.1007/s10554-020-01948-9.
    1. Higashi H., Inoue K., Inaba S., Nakao Y., Kinoshita M., Miyazaki S., Miyoshi T., Akazawa Y., Kawakami H., Uetani T., et al. Restricted left atrial dilatation can visually differentiate cardiac amyloidosis from hypertrophic cardiomyopathy. ESC Heart Fail. 2021;8:3198–3205. doi: 10.1002/ehf2.13442.
    1. Donnellan E., Wazni O.M., Hanna M., Elshazly M.B., Puri R., Saliba W., Kanj M., Vakamudi S., Patel D.R., Baranowski B., et al. Atrial Fibrillation in Transthyretin Cardiac Amyloidosis: Predictors, Prevalence, and Efficacy of Rhythm Control Strategies. JACC Clin. Electrophysiol. 2020;6:1118–1127. doi: 10.1016/j.jacep.2020.04.019.
    1. Martinez-Naharro A., Gonzalez-Lopez E., Corovic A., Mirelis J.G., Baksi A.J., Moon J.C., Garcia-Pavia P., Gillmore J.D., Hawkins P.N., Fontana M. High Prevalence of Intracardiac Thrombi in Cardiac Amyloidosis. J. Am. Coll. Cardiol. 2019;73:1733–1734. doi: 10.1016/j.jacc.2019.01.035.
    1. Baumgartner H. Geriatric congenital heart disease: A new challenge in the care of adults with congenital heart disease? Eur. Heart J. 2014;35:683–685. doi: 10.1093/eurheartj/eht358.
    1. Diller G.P., Kempny A., Alonso-Gonzalez R., Swan L., Uebing A., Li W., Babu-Narayan S., Wort S.J., Dimopoulos K., Gatzoulis M.A. Survival Prospects and Circumstances of Death in Contemporary Adult Congenital Heart Disease Patients Under Follow-Up at a Large Tertiary Centre. Circulation. 2015;132:2118–2125. doi: 10.1161/CIRCULATIONAHA.115.017202.
    1. Panesar D.K., Burch M. Assessment of Diastolic Function in Congenital Heart Disease. Front. Cardiovasc. Med. 2017;4:5. doi: 10.3389/fcvm.2017.00005.
    1. Thomas L., Marwick T.H., Popescu B.A., Donal E., Badano L.P. Left Atrial Structure and Function, and Left Ventricular Diastolic Dysfunction: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019;73:1961–1977. doi: 10.1016/j.jacc.2019.01.059.
    1. Ma X.J., Huang G.Y., Liu F., Wu L., Sheng F., Tao Z.Y. The impacts of transcatheter occlusion for congenital atrial septal defect on atrial volume, function, and synchronicity in children: A three-dimensional echocardiography study. Echocardiography. 2008;25:1101–1111. doi: 10.1111/j.1540-8175.2008.00730.x.
    1. Seo J.S., Park Y.A., Wi J.H., Jin H.Y., Han I.Y., Jang J.S., Yang T.H., Kim D.K., Kim D.S. Long-Term Left Atrial Function after Device Closure and Surgical Closure in Adult Patients with Atrial Septal Defect. J. Cardiovasc. Imaging. 2021;29:123–132. doi: 10.4250/jcvi.2020.0142.
    1. Spies C., Khandelwal A., Timmermanns I., Schrader R. Incidence of atrial fibrillation following transcatheter closure of atrial septal defects in adults. Am. J. Cardiol. 2008;102:902–906. doi: 10.1016/j.amjcard.2008.05.045.
    1. Vitarelli A., Mangieri E., Gaudio C., Tanzilli G., Miraldi F., Capotosto L. Right atrial function by speckle tracking echocardiography in atrial septal defect: Prediction of atrial fibrillation. Clin. Cardiol. 2018;41:1341–1347. doi: 10.1002/clc.23051.
    1. Iio C., Inoue K., Tashiro R., Higaki T., Higaki J. Secundum atrial septal defect resulting in hypoxaemia. Eur. Heart J. Cardiovasc. Imaging. 2014;15:103. doi: 10.1093/ehjci/jet106.
    1. Fukuda Y., Tanaka H., Motoji Y., Ryo K., Sawa T., Imanishi J., Miyoshi T., Mochizuki Y., Tatsumi K., Matsumoto K., et al. Utility of combining assessment of right ventricular function and right atrial remodeling as a prognostic factor for patients with pulmonary hypertension. Int. J. Cardiovasc. Imaging. 2014;30:1269–1277. doi: 10.1007/s10554-014-0460-6.
    1. Fontan F., Baudet E. Surgical repair of tricuspid atresia. Thorax. 1971;26:240–248. doi: 10.1136/thx.26.3.240.
    1. Gentles T.L., Mayer J.E., Jr., Gauvreau K., Newburger J.W., Lock J.E., Kupferschmid J.P., Burnett J., Jonas R.A., Castaneda A.R., Wernovsky G. Fontan operation in five hundred consecutive patients: Factors influencing early and late outcome. J. Thorac. Cardiovasc. Surg. 1997;114:376–391. doi: 10.1016/S0022-5223(97)70183-1.
    1. Amodeo A., Galletti L., Marianeschi S., Picardo S., Giannico S., Di Renzi P., Marcelletti C. Extracardiac Fontan operation for complex cardiac anomalies: Seven years’ experience. J. Thorac. Cardiovasc. Surg. 1997;114:1020–1030. doi: 10.1016/S0022-5223(97)70016-3. discussion 1030-1021.
    1. Veldtman G.R., Nishimoto A., Siu S., Freeman M., Fredriksen P.M., Gatzoulis M.A., Williams W.G., Webb G.D. The Fontan procedure in adults. Heart. 2001;86:330–335. doi: 10.1136/heart.86.3.330.
    1. Penny D.J., Rigby M.L., Redington A.N. Abnormal patterns of intraventricular flow and diastolic filling after the Fontan operation: Evidence for incoordinate ventricular wall motion. Br Heart J. 1991;66:375–378. doi: 10.1136/hrt.66.5.375.
    1. Frommelt P.C., Snider A.R., Meliones J.N., Vermilion R.P. Doppler assessment of pulmonary artery flow patterns and ventricular function after the Fontan operation. Am. J. Cardiol. 1991;68:1211–1215. doi: 10.1016/0002-9149(91)90195-Q.
    1. Akagi T., Benson L.N., Gilday D.L., Ash J., Green M., Williams W.G., Freedom R.M. Influence of ventricular morphology on diastolic filling performance in double-inlet ventricle after the Fontan procedure. J. Am. Coll. Cardiol. 1993;22:1948–1952. doi: 10.1016/0735-1097(93)90784-X.
    1. Khoo N.S., Smallhorn J.F., Kaneko S., Kutty S., Altamirano L., Tham E.B. The assessment of atrial function in single ventricle hearts from birth to Fontan: A speckle-tracking study by using strain and strain rate. J. Am. Soc. Echocardiogr. 2013;26:756–764. doi: 10.1016/j.echo.2013.04.005.
    1. Li S.J., Wong S.J., Cheung Y.F. Atrial and ventricular mechanics in patients after Fontan-type procedures: Atriopulmonary connection versus extracardiac conduit. J. Am. Soc. Echocardiogr. 2014;27:666–674. doi: 10.1016/j.echo.2014.01.027.

Source: PubMed

3
구독하다