Understand spiciness: mechanism of TRPV1 channel activation by capsaicin

Fan Yang, Jie Zheng, Fan Yang, Jie Zheng

Abstract

Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1) ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel's transmembrane segments, where it takes a "tail-up, head-down" configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by "pull-and-contact" with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1.

Keywords: TRPV1; capsaicin; computation; cryo-EM; ligand gating; spiciness.

Figures

Figure 1
Figure 1
Capsaicin and TRPV1. (A) Chemical structure of capsaicin. The vanillyl Head and hydrophobic Tail groups are shaded in orange and blue, respectively. The atoms forming hydrogen bonds with TRPV1 are highlighted in red. (B) Schematic diagram showing the topology of a TRPV1 subunit. Membrane is shaded in green. (C) High resolution structure of rat TRPV1 determined by cryo-EM (atomic model: 3J5R in PDB; electron density map, 5777 in EMD). It is clear that capsaicin (electron density boxed by solid line) binds to the transmembrane domains. Lipid membrane boundaries are indicated by cyan disks. (D) A zoom-in view of the capsaicin binding pocket. Residue important for capsaicin activation identified by mutagenesis and functional studies are colored in orange. The electron density of capsaicin is colored in red
Figure 2
Figure 2
Mechanism of TRPV1 activation by capsaicin. (A) Docking of capsaicin into its binding pocket on open-state TRPV1 structure (PDB ID: 3J5R). The Head, Neck and Tail of capsaicin are colored in red, blue and magenta, respectively. Two residues making hydrogen bonds with capsaicin are highlighted in orange. Note that the amino acid numbering for mouse TRPV1 differs from that for rat and human TRPV1 (Fig. 1) by one. (B) Diagram showing the principle of thermodynamic mutant cycle analysis. (C) Cartoon summarizing capsaicin binding and activation of TRPV1

References

    1. Ahern GP, Brooks IM, Miyares RL, Wang XB. Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci Off J Soc Neurosci. 2005;25:5109–5116. doi: 10.1523/JNEUROSCI.0237-05.2005.
    1. Appendino G, et al. Halogenation of a capsaicin analogue leads to novel vanilloid TRPV1 receptor antagonists. Br J Pharmacol. 2003;139:1417–1424. doi: 10.1038/sj.bjp.0705387.
    1. Appendino G, et al. The taming of capsaicin. Reversal of the vanilloid activity of N-acylvanillamines by aromatic iodination. J Med Chem. 2005;48:4663–4669. doi: 10.1021/jm050139q.
    1. Barth P, Schonbrun J, Baker D. Toward high-resolution prediction and design of transmembrane helical protein structures. Proc Natl Acad Sci USA. 2007;104:15682–15687. doi: 10.1073/pnas.0702515104.
    1. Bevan S, Szolcsanyi J. Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends Pharm Sci. 1990;11:330–333. doi: 10.1016/0165-6147(90)90237-3.
    1. Bhutani M, et al. Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin Cancer Res. 2007;13:3024–3032. doi: 10.1158/1078-0432.CCR-06-2575.
    1. Bohlen CJ, et al. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell. 2010;141:834–845. doi: 10.1016/j.cell.2010.03.052.
    1. Cao E, Liao M, Cheng Y, Julius D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature. 2013;504:113–118. doi: 10.1038/nature12823.
    1. Cao X, Ma L, Yang F, Wang K, Zheng J. Divalent cations potentiate TRPV1 channel by lowering the heat activation threshold. J Gen Physiol. 2014;143:75–90. doi: 10.1085/jgp.201311025.
    1. Carnevale V, Rohacs T. TRPV1: a target for rational drug design. Pharmaceuticals. 2016
    1. Caterina MJ, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–824. doi: 10.1038/39807.
    1. Caterina MJ, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288:306–313. doi: 10.1126/science.288.5464.306.
    1. Cheng W, Yang F, Takanishi CL, Zheng J. Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. J Gen Physiol. 2007;129:191–207. doi: 10.1085/jgp.200709731.
    1. Cheng W, Sun C, Zheng J. Heteromerization of TRP channel subunits: extending functional diversity. Protein & Cell. 2010;1(9):802–810. doi: 10.1007/s13238-010-0108-9.
    1. Cheng W, et al. Heteromeric heat-sensitive transient receptor potential channels exhibit distinct temperature and chemical response. J Biol Chem. 2012;287:7279–7288. doi: 10.1074/jbc.M111.305045.
    1. Cui Y, et al. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations. J Gen Physiol. 2012;139:273–283. doi: 10.1085/jgp.201110724.
    1. Darre L, Domene C. Binding of capsaicin to the TRPV1 Ion Channel. Mol Pharm. 2015;12:4454–4465. doi: 10.1021/acs.molpharmaceut.5b00641.
    1. Diaz-Franulic I, Poblete H, Mino-Galaz G, Gonzalez C, Latorre R. Allosterism and structure in thermally activated transient receptor potential channels. Ann Rev Biophys. 2016
    1. Elokely K, et al. Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin. Proc Natl Acad Sci USA. 2016;113:E137–145. doi: 10.1073/pnas.1517288113.
    1. Fernandez JA, et al. Voltage- and cold-dependent gating of single TRPM8 ion channels. J Gen Physiol. 2011;137:173–195. doi: 10.1085/jgp.201010498.
    1. Fernandez-Ballester G, Ferrer-Montiel A. Molecular modeling of the full-length human TRPV1 channel in closed and desensitized states. J Membr Biol. 2008;223:161–172. doi: 10.1007/s00232-008-9123-7.
    1. Ferrer-Montiel A, et al. Molecular architecture of the vanilloid receptor. Insights for drug design. Eur J Biochem. 2004;271:1820–1826. doi: 10.1111/j.1432-1033.2004.04083.x.
    1. Fischer MJ, et al. Direct evidence for functional TRPV1/TRPA1 heteromers. Pflugers Arch Eur J Physiol. 2014;466:2229–2241. doi: 10.1007/s00424-014-1497-z.
    1. Gao Y, Cao E, Julius D, Cheng Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 2016;534:347–351. doi: 10.1038/nature17964.
    1. Gavva NR, et al. Molecular determinants of vanilloid sensitivity in TRPV1. J Biol Chem. 2004;279:20283–20295. doi: 10.1074/jbc.M312577200.
    1. Grosman C, Zhou M, Auerbach A. Mapping the conformational wave of acetylcholine receptor channel gating. Nature. 2000;403:773–776. doi: 10.1038/35001586.
    1. Hanson SM, Newstead S, Swartz KJ, Sansom MS. Capsaicin interaction with TRPV1 channels in a lipid bilayer: molecular dynamics simulation. Biophys J. 2015;108:1425–1434. doi: 10.1016/j.bpj.2015.02.013.
    1. Hui K, Liu B, Qin F. Capsaicin activation of the pain receptor, VR1: multiple open states from both partial and full binding. Biophys J. 2003;84:2957–2968. doi: 10.1016/S0006-3495(03)70022-8.
    1. Huynh KW, et al. Structure of the full-length TRPV2 channel by cryo-EM. Nat Commun. 2016;7:11130. doi: 10.1038/ncomms11130.
    1. Inada H, Procko E, Sotomayor M, Gaudet R. Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry. 2012;51:6195–6206. doi: 10.1021/bi300279b.
    1. Jin X, Touhey J, Gaudet R. Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem. 2006;281:25006–25010. doi: 10.1074/jbc.C600153200.
    1. Jordt SE, Julius D. Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell. 2002;108:421–430. doi: 10.1016/S0092-8674(02)00637-2.
    1. Julius D. TRP channels and pain. Ann Rev Cell Dev Biol. 2013;29:355–384. doi: 10.1146/annurev-cellbio-101011-155833.
    1. Lau SY, Procko E, Gaudet R. Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. J Gen Physiol. 2012;140:541–555. doi: 10.1085/jgp.201210810.
    1. Lazar J, Gharat L, Khairathkar-Joshi N, Blumberg PM, Szallasi A. Screening TRPV1 antagonists for the treatment of pain: lessons learned over a decade. Expert Opin Drug Discov. 2009;4:159–180. doi: 10.1517/17460440802681300.
    1. Leaver-Fay A, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545–574. doi: 10.1016/B978-0-12-381270-4.00019-6.
    1. Liao M, Cao E, Julius D, Cheng Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature. 2013;504:107–112. doi: 10.1038/nature12822.
    1. Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R. The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron. 2007;54:905–918. doi: 10.1016/j.neuron.2007.05.027.
    1. Lu Z, Klem AM, Ramu Y. Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J Gen Physiol. 2002;120:663–676. doi: 10.1085/jgp.20028696.
    1. Ma L, Yang F, Vu S, Zheng J. Exploring functional roles of TRPV1 intracellular domains with unstructured peptide-insertion screening. Sci Rep. 2016;6:33827. doi: 10.1038/srep33827.
    1. Matta JA, Ahern GP. Voltage is a partial activator of rat thermosensitive TRP channels. J Physiol. 2007;585:469–482. doi: 10.1113/jphysiol.2007.144287.
    1. McGann M. FRED and HYBRID docking performance on standardized datasets. J Comput Aid Mol Des. 2012;26:897–906. doi: 10.1007/s10822-012-9584-8.
    1. Mio K, et al. The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J Mol Biol. 2007;367:373–383. doi: 10.1016/j.jmb.2006.12.043.
    1. Moiseenkova-Bell VY, Stanciu LA, Serysheva II, Tobe BJ, Wensel TG. Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci USA. 2008;105:7451–7455. doi: 10.1073/pnas.0711835105.
    1. Montell C, et al. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell. 2002;9:229–231. doi: 10.1016/S1097-2765(02)00448-3.
    1. Moran MM, McAlexander MA, Biro T, Szallasi A. Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov. 2011;10:601–620. doi: 10.1038/nrd3456.
    1. Nelson EK, Dawson LE. The constitution of capsaicin, the pungent principle of capsicum III. J Am Chem Soc. 1923;45:2179–2181. doi: 10.1021/ja01662a023.
    1. Nilius B, Appendino G. Spices: the savory and beneficial science of pungency. Rev Physiol Biochem Pharmacol. 2013;164:1–76.
    1. Oh U, Hwang SW, Kim D. Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J Neurosci Off J Soc Neurosci. 1996;16:1659–1667.
    1. Ohbuchi K, et al. Detailed analysis of the binding mode of vanilloids to transient receptor potential vanilloid type I (TRPV1) by a mutational and computational study. PloS ONE. 2016;11:e0162543. doi: 10.1371/journal.pone.0162543.
    1. Paulsen CE, Armache JP, Gao Y, Cheng Y, Julius D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature. 2015
    1. Phelps CB, Huang RJ, Lishko PV, Wang RR, Gaudet R. Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry. 2008;47:2476–2484. doi: 10.1021/bi702109w.
    1. Piskorowski R, Aldrich RW. Calcium activation of BK(Ca) potassium channels lacking the calcium bowl and RCK domains. Nature. 2002;420:499–502. doi: 10.1038/nature01199.
    1. Puljung MC, DeBerg HA, Zagotta WN, Stoll S. Double electron-electron resonance reveals cAMP-induced conformational change in HCN channels. Proc Natl Acad Sci USA. 2014;111:9816–9821. doi: 10.1073/pnas.1405371111.
    1. Purohit P, Mitra A, Auerbach A. A stepwise mechanism for acetylcholine receptor channel gating. Nature. 2007;446:930–933. doi: 10.1038/nature05721.
    1. Ranganathan R, Lewis JH, MacKinnon R. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron. 1996;16:131–139. doi: 10.1016/S0896-6273(00)80030-6.
    1. Sakmann B, Neher E. Single-channel recording. 2. New York: Springer; 2009.
    1. Salazar H, et al. Structural determinants of gating in the TRPV1 channel. Nat Struct Mol Biol. 2009;16:704–710. doi: 10.1038/nsmb.1633.
    1. Saotome K, Singh AK, Yelshanskaya MV, Sobolevsky AI. Crystal structure of the epithelial calcium channel TRPV6. Nature. 2016;534:506–511. doi: 10.1038/nature17975.
    1. Schreiber G, Fersht AR. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol. 1995;248:478–486.
    1. Scoville WL. Note on capsicums. J Am Pharm Assoc. 1912;1:1.
    1. Shi DJ, Ye S, Cao X, Zhang R, Wang K. Crystal structure of the N-terminal ankyrin repeat domain of TRPV3 reveals unique conformation of finger 3 loop critical for channel function. Prot Cell. 2013;4:942–950. doi: 10.1007/s13238-013-3091-0.
    1. Shigematsu H, Sokabe T, Danev R, Tominaga M, Nagayama K. A, 3.5-nm structure of rat TRPV4 cation channel revealed by Zernike phase-contrast cryoelectron microscopy. J Biol Chem. 2010;285:11210–11218. doi: 10.1074/jbc.M109.090712.
    1. Siemens J, et al. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature. 2006;444:208–212. doi: 10.1038/nature05285.
    1. Sunderman ER, Zagotta WN. Sequence of events underlying the allosteric transition of rod cyclic nucleotide-gated channels. J Gen Physiol. 1999;113:621–640. doi: 10.1085/jgp.113.5.621.
    1. Sunderman ER, Zagotta WN. Mechanism of allosteric modulation of rod cyclic nucleotide-gated channels. J Gen Physiol. 1999;113:601–620. doi: 10.1085/jgp.113.5.601.
    1. Szallasi A. The vanilloid (capsaicin) receptor: receptor types and species differences. Gen Pharmacol. 1994;25:223–243. doi: 10.1016/0306-3623(94)90049-3.
    1. Szallasi A, Blumberg PM. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev. 1999;51:159–212.
    1. Szolcsanyi J, Jancso-Gabor A. Sensory effects of capsaicin congeners I. Relationship between chemical structure and pain-producing potency of pungent agents. Arzneimittelforschung. 1975;25:1877–1881.
    1. Szolcsanyi J, Jancso-Gabor A. Sensory effects of capsaicin congeners. Part II: Importance of chemical structure and pungency in desensitizing activity of capsaicin-type compounds. Arzneimittelforschung. 1976;26:33–37.
    1. Tekpinar M, Zheng W. Predicting order of conformational changes during protein conformational transitions using an interpolated elastic network model. Proteins. 2010;78:2469–2481.
    1. Thresh JC. Isolation of capsaicin. Pharm J Trans. 1876;6:941–947.
    1. Tominaga M, Julius D. Capsaicin receptor in the pain pathway. Jpn J Pharm. 2000;83:20–24. doi: 10.1254/jjp.83.20.
    1. Tominaga M, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998;21:531–543. doi: 10.1016/S0896-6273(00)80564-4.
    1. Yang F, Cui Y, Wang K, Zheng J. Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc Natl Acad Sci USA. 2010;107:7083–7088. doi: 10.1073/pnas.1000357107.
    1. Yang F, Yarov-Yarovoy V, Zheng J. Modeling temperature-dependent ion channel protein structural changes with rosetta. Biophys J. 2013;104:229a–230a. doi: 10.1016/j.bpj.2012.11.1295.
    1. Yang F, Ma L, Cao X, Wang K, Zheng J. Divalent cations activate TRPV1 through promoting conformational change of the extracellular region. J Gen Physiol. 2014;143:91–103. doi: 10.1085/jgp.201311024.
    1. Yang S, et al. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nat Commun. 2015;6:8297. doi: 10.1038/ncomms9297.
    1. Yang F, et al. Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel. Nat Chem Biol. 2015;11:518–524. doi: 10.1038/nchembio.1835.
    1. Yang F, Vu S, Yarov-Yarovoy V, Zheng J. Rational design and validation of a vanilloid-sensitive TRPV2 ion channel. Proc Natl Acad Sci USA. 2016
    1. Yarov-Yarovoy V, Schonbrun J, Baker D. Multipass membrane protein structure prediction using Rosetta. Proteins. 2006;62:1010–1025. doi: 10.1002/prot.20817.
    1. Yarov-Yarovoy V, et al. Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proc Natl Acad Sci USA. 2012;109:E93–102. doi: 10.1073/pnas.1118434109.
    1. Ye XY, Ling QZ, Chen SJ. Identification of a potential target of capsaicin by computational target fishing. Evid Based Complement Altern Med. 2015;2015:983951.
    1. Zagotta WN, et al. Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature. 2003;425:200–205. doi: 10.1038/nature01922.
    1. Zhang F, et al. Engineering vanilloid-sensitivity into the rat TRPV2 channel. eLife. 2016
    1. Zheng J. Molecular mechanism of TRP channels. Compr Physiol. 2013;3:221–242.
    1. Zheng W, Auerbach A. Decrypting the sequence of structural events during the gating transition of pentameric ligand-gated ion channels based on an interpolated elastic network model. PLoS Comput Biol. 2011;7:e1001046. doi: 10.1371/journal.pcbi.1001046.
    1. Zheng J, Ma L. Structure and function of the thermoTRP channel pore. Curr Top Membr. 2014;74:233–257. doi: 10.1016/B978-0-12-800181-3.00009-9.
    1. Zheng J, Trudeau MC. Handbook of ion channels. Boca Raton: CRC Press; 2015.
    1. Zubcevic L, et al. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol. 2016;23:180–186. doi: 10.1038/nsmb.3159.

Source: PubMed

3
구독하다