Chronic Kidney Disease and Exposure to Nephrotoxic Metals

Sarah E Orr, Christy C Bridges, Sarah E Orr, Christy C Bridges

Abstract

Chronic kidney disease (CKD) is a common progressive disease that is typically characterized by the permanent loss of functional nephrons. As injured nephrons become sclerotic and die, the remaining healthy nephrons undergo numerous structural, molecular, and functional changes in an attempt to compensate for the loss of diseased nephrons. These compensatory changes enable the kidney to maintain fluid and solute homeostasis until approximately 75% of nephrons are lost. As CKD continues to progress, glomerular filtration rate decreases, and remaining nephrons are unable to effectively eliminate metabolic wastes and environmental toxicants from the body. This inability may enhance mortality and/or morbidity of an individual. Environmental toxicants of particular concern are arsenic, cadmium, lead, and mercury. Since these metals are present throughout the environment and exposure to one or more of these metals is unavoidable, it is important that the way in which these metals are handled by target organs in normal and disease states is understood completely.

Keywords: arsenic; cadmium; chronic kidney disease; lead, mercury.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Histological sections of kidneys from Sham or 75% nephrectomized Wistar rats. Normal glomeruli (arrows) and tubules from the renal cortex are shown in panel (A) while panel (B) shows normal tubules (arrowheads) from the outer stripe of the outer medulla. Sections of renal cortex (C) and outer stripe of outer medulla (D) from a 75% nephrectomized rat are also shown. A 75% nephrectomized rat is considered to be an appropriate model of chronic kidney disease. Glomeruli (arrows (C)) from a 75% nephrectomized rat appear to be hypertrophied as a compensatory response to a reduction in renal mass. Similarly, the tubules in the outer stripe of the outer medulla (D) of the 75% nephrectomized rat also appear to be hypertrophied (arrowheads). In contrast, some tubules (*) display signs of necrosis, which is likely due to the reduced perfusion of blood to those nephrons. Magnification, 100×.
Figure 2
Figure 2
Histological sections of kidneys from Sham or 75% nephrectomized Wistar rats exposed to 2.5 μmol kg−1 HgCl2. Panel (A) shows a representative section of kidney from Sham rats exposed to2.5 μmol kg−1 HgCl2. This section displays a normal glomerulus (arrow) and a mix of normal and injured tubules (*). In addition, there is an infiltration of lymphocytes, which is likely one of the first responses to the inflammation caused by exposure to mercury. Panel (B) shows a representative section of kidney from 75% nephrectomized rats exposed to 2.5 μmol kg−1 HgCl2. Glomeruli (arrows) were hypertrophied and tubular necrosis (*) was widespread. The degree of injury in the 75% nephrectomized rats was significantly greater than that in corresponding Sham rats, suggesting that rats with reduced renal mass may be more sensitive to the nephrotoxicants such as mercury, than rats with normal renal mass. Magnification, 100×.
Figure 2
Figure 2
Histological sections of kidneys from Sham or 75% nephrectomized Wistar rats exposed to 2.5 μmol kg−1 HgCl2. Panel (A) shows a representative section of kidney from Sham rats exposed to2.5 μmol kg−1 HgCl2. This section displays a normal glomerulus (arrow) and a mix of normal and injured tubules (*). In addition, there is an infiltration of lymphocytes, which is likely one of the first responses to the inflammation caused by exposure to mercury. Panel (B) shows a representative section of kidney from 75% nephrectomized rats exposed to 2.5 μmol kg−1 HgCl2. Glomeruli (arrows) were hypertrophied and tubular necrosis (*) was widespread. The degree of injury in the 75% nephrectomized rats was significantly greater than that in corresponding Sham rats, suggesting that rats with reduced renal mass may be more sensitive to the nephrotoxicants such as mercury, than rats with normal renal mass. Magnification, 100×.

References

    1. Price R.G. Urinary enzymes, nephrotoxicity and renal disease. Toxicology. 1982;23:99–134. doi: 10.1016/0300-483X(82)90092-0.
    1. Zalups R.K., Diamond G.L. Mercuric chloride-induced nephrotoxicity in the rat following unilateral nephrectomy and compensatory renal growth. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1987;53:336–346. doi: 10.1007/BF02890261.
    1. Zalups R.K., Cox C., Diamond G.L. Histological and urinalysis assessment of nephrotoxicity induced by mercuric chloride in normal and uninephrectomized rats. In: Clarkson T.W., Friberg L., Nordberg G.F., Sager P.R., editors. Biological Monitoring of Toxic Metals. Plenum Publishing Corporation; New York, NY, USA: 1988. pp. 531–545.
    1. Clarkson T.W., Magos L. The effect of sodium maleate on the renal deposition and excretion of mercury. Br. J. Pharmacol. Chemother. 1967;31:560–567. doi: 10.1111/j.1476-5381.1967.tb00420.x.
    1. Magos L., Stoytchev T. Combined effect of sodium maleate and some thiol compounds on mercury excretion and redistribution in rats. Br. J. Pharmacol. 1969;35:121–126. doi: 10.1111/j.1476-5381.1969.tb07972.x.
    1. Trojanowska B., Piotrowski J.K., Szendzikowski S. The influence of thioacetamide on the excretion of mercury in rats. Toxicol. Appl. Pharmacol. 1971;18:374–386. doi: 10.1016/0041-008X(71)90130-X.
    1. Hall R.L., Wilke W.L., Fettman M.J. Renal resistance to mercuric chloride toxicity during prolonged exposure in rats. Vet. Hum. Toxicol. 1986;28:305–307.
    1. Eto K., Yasutake A., Miyamoto K., Tokunaga H., Otsuka Y. Chronic effects of methylmercury in rats. II. Pathological aspects. Tohoku J. Exp. Med. 1997;182:197–205. doi: 10.1620/tjem.182.197.
    1. Miller S., Pallan S., Gangji A.S., Lukic D., Clase C.M. Mercury-associated nephrotic syndrome: A case report and systematic review of the literature. Am. J. Kidney Dis. 2013;62:135–138. doi: 10.1053/j.ajkd.2013.02.372.
    1. Vanholder R.C., Praet M.M., Pattyn P.A., Leusen I.R., Lameire N.H. Dissociation of glomerular filtration and renal blood flow in HgCl2-induced acute renal failure. Kidney Int. 1982;22:162–170. doi: 10.1038/ki.1982.148.
    1. Houser M.T., Berndt W.O. The effect of unilateral nephrectomy on the nephrotoxicity of mercuric chloride in the rat. Toxicol. Appl. Pharmacol. 1986;83:506–515. doi: 10.1016/0041-008X(86)90233-4.
    1. Houser M.T., Berndt W.O. Unilateral nephrectomy in the rat: Effects on mercury handling and renal cortical subcellular distribution. Toxicol. Appl. Pharmacol. 1988;93:187–194. doi: 10.1016/0041-008X(88)90119-6.
    1. Ramos-Frendo B., Perez-Garcia R., Lopez-Novoa J.M., Hernando-Avendano L. Increased severity of the acute renal failure induced by HgCl2 on rats with reduced renal mass. Biomedicine. 1979;31:167–170.
    1. Zalups R.K. Autometallographic localization of inorganic mercury in the kidneys of rats: Effect of unilateral nephrectomy and compensatory renal growth. Exp. Mol. Pathol. 1991;54:10–21. doi: 10.1016/0014-4800(91)90039-Z.
    1. Zalups R.K. Enhanced renal outer medullary uptake of mercury associated with uninephrectomy: Implication of a luminal mechanism. J. Toxicol. Environ. Health. 1997;50:173–194. doi: 10.1080/009841097160564.
    1. Zalups R.K., Barfuss D.W., Kostyniak P.J. Altered intrarenal accumulation of mercury in uninephrectomized rats treated with methylmercury chloride. Toxicol. Appl. Pharmacol. 1992;115:174–182. doi: 10.1016/0041-008X(92)90321-I.
    1. Zalups R.K., Klotzbach J.M., Diamond G.L. Enhanced accumulation of injected inorganic mercury in renal outer medulla after unilateral nephrectomy. Toxicol. Appl. Pharmacol. 1987;89:226–236. doi: 10.1016/0041-008X(87)90043-3.
    1. Bridges C.C., Barfuss D.W., Joshee L., Zalups R.K. Compensatory Renal Hypertrophy and the Uptake of Cysteine S-Conjugates of Hg2+ in Isolated S2 Proximal Tubular Segments. Toxicol. Sci. 2016;154:278–288. doi: 10.1093/toxsci/kfw160.
    1. Zalups R.K., Bridges C.C. Seventy-five percent nephrectomy and the disposition of inorganic mercury in 2,3-dimercaptopropanesulfonic acid-treated rats lacking functional multidrug-resistance protein 2. J. Pharmacol. Exp. Ther. 2010;332:866–875. doi: 10.1124/jpet.109.163774.
    1. Centers for Disease Control and Prevention (CDC) Chronic Kidney Disease Surveillance System—United States. [(accessed on 16 September 2016)]; Available online: .
    1. Centers for Disease Control and Prevention (CDC) Summary Health Statistics: National Health Interview Survey. U.S. Department of Human and Heath Services; Centers for Disease Control and Prevention; Atlanta, GA, USA: 2014.
    1. Jha V., Garcia-Garcia G., Iseki K., Li Z., Naicker S., Plattner B., Saran R., Wang A.Y., Yang C.W. Chronic kidney disease: Global dimension and perspectives. Lancet. 2013;382:260–272. doi: 10.1016/S0140-6736(13)60687-X.
    1. Centers of Disease Control and Prevention (CDC) National Chronic Kidney Disease Fact Sheet: General Information and National Estimates on Chronic Kidney Disease in the United States. US Department of Heath and Human Services; Atlanta, GA, USA: 2014.
    1. Fine L.G., Norman J.T., Kujubu D.A., Knecht A. Renal Hypertrophy. In: Seldin D.W., Giebisch G., editors. The Kidney: Physiology and Pathophysiology. 2nd ed. Raven Press; New York, NY, USA: 1992. pp. 3113–3133.
    1. Salehmoghaddam S., Bradley T., Mikhail N., Badie-Dezfooly B., Nord E.P., Trizna W., Kheyfets R., Fine L.G. Hypertrophy of basolateral Na-K pump activity in the proximal tubule of the remnant kidney. Lab. Investig. 1985;53:443–452.
    1. Toback F.G., Smith P.D., Lowenstein L.M. Phospholipid metabolism in the initiation of renal compensatory growth after acute reduction of renal mass. J. Clin. Investig. 1974;54:91–97. doi: 10.1172/JCI107754.
    1. Wolf G. Cellular mechanisms of tubule hypertrophy and hyperplasia in renal injury. Miner Electrolyte Metab. 1995;21:303–316.
    1. Bricker N.S., Fine L.G. The Renal Response to Progressive Nephron Loss. In: Brenner B.M., Rector F.C., editors. The Kidney. 2nd ed. Volume 1. Saunders; Philadelphia, PA, USA: 1981. pp. 1056–1096.
    1. Klahr S. Progression of chronic renal disease. Nutrition. 1990;6:207–212.
    1. Fine L.G., Norman J. Cellular events in renal hypertrophy. Annu. Rev. Physiol. 1989;51:19–32. doi: 10.1146/annurev.ph.51.030189.000315.
    1. Lopez-Novoa J.M. The Mechanisms of Age-Associated Glomerular Sclerosis. In: Macias Nunez J.F., Cameron J.S., Oreopoulos D.G., editors. The Aging Kidney in Health and Disease. Springer; New York, NY, USA: 2008. pp. 113–126.
    1. Roels H.A., Lauwerys R.R., Bernard A.M., Buchet J.P., Vos A., Oversteyns M. Assessment of the filtration reserve capacity of the kidney in workers exposed to cadmium. Br. J. Ind. Med. 1991;48:365–374. doi: 10.1136/oem.48.6.365.
    1. Uriu K., Kaizu K., Qie Y.L., Ito A., Takagi I., Suzuka K., Inada Y., Hashimoto O., Eto S. Long-term oral intake of low-dose cadmium exacerbates age-related impairment of renal functional reserve in rats. Toxicol. Appl. Pharmacol. 2000;169:151–158. doi: 10.1006/taap.2000.9063.
    1. Zalups R.K. Reductions in renal mass and the nephropathy induced by mercury. Toxicol. Appl. Pharmacol. 1997;143:366–379. doi: 10.1006/taap.1996.8084.
    1. Agency for Toxic Substances and Disease Registry (ATSDR) Public Health Statement: Arsenic. Centers for Disease Control and Prevention; Atlanta, GA, USA: 2007.
    1. Sattar A., Xie S., Hafeez M.A., Wang X., Hussain H.I., Iqbal Z., Pan Y., Iqbal M., Shabbir M.A., Yuan Z. Metabolism and toxicity of arsenicals in mammals. Environ. Toxicol. Pharmacol. 2016;48:214–224. doi: 10.1016/j.etap.2016.10.020.
    1. Thomas D.J., Styblo M., Lin S. The cellular metabolism and systemic toxicity of arsenic. Toxicol. Appl. Pharmacol. 2001;176:127–144. doi: 10.1006/taap.2001.9258.
    1. Calatayud M., Barrios J.A., Velez D., Devesa V. In vitro study of transporters involved in intestinal absorption of inorganic arsenic. Chem. Res. Toxicol. 2012;25:446–453. doi: 10.1021/tx200491f.
    1. Tseng W.P., Chu H.M., How S.W., Fong J.M., Lin C.S., Yeh S. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J. Natl. Cancer Inst. 1968;40:453–463.
    1. Engel R.R., Hopenhayn-Rich C., Receveur O., Smith A.H. Vascular effects of chronic arsenic exposure: A review. Epidemiol. Rev. 1994;16:184–209. doi: 10.1093/oxfordjournals.epirev.a036150.
    1. Sung T.C., Huang J.W., Guo H.R. Association between Arsenic Exposure and Diabetes: A Meta-Analysis. BioMed Res. Int. 2015;2015:368087. doi: 10.1155/2015/368087.
    1. Sengupta S.R., Das N.K., Datta P.K. Pathogenesis, clinical features and pathology of chronic arsenicosis. Indian J. Dermatol. Venereol. Leprol. 2008;74:559–570.
    1. Lin S., Shi Q., Nix F.B., Styblo M., Beck M.A., Herbin-Davis K.M., Hall L.L., Simeonsson J.B., Thomas D.J. A novel S-adenosyl-l-methionine: Arsenic(III) methyltransferase from rat liver cytosol. J. Biol. Chem. 2002;277:10795–10803. doi: 10.1074/jbc.M110246200.
    1. Healy S.M., Casarez E.A., Ayala-Fierro F., Aposhian H. Enzymatic methylation of arsenic compounds. V. Arsenite methyltransferase activity in tissues of mice. Toxicol. Appl. Pharmacol. 1998;148:65–70. doi: 10.1006/taap.1997.8306.
    1. Thomas D.J., Li J., Waters S.B., Xing W., Adair B.M., Drobna Z., Devesa V., Styblo M. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Exp. Biol. Med. 2007;232:3–13.
    1. Petrick J.S., Ayala-Fierro F., Cullen W.R., Carter D.E., Vasken Aposhian H. Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol. Appl. Pharmacol. 2000;163:203–207. doi: 10.1006/taap.1999.8872.
    1. Styblo M., Del Razo L.M., Vega L., Germolec D.R., LeCluyse E.L., Hamilton G.A., Reed W., Wang C., Cullen W.R., Thomas D.J. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 2000;74:289–299. doi: 10.1007/s002040000134.
    1. Mass M.J., Tennant A., Roop B.C., Cullen W.R., Styblo M., Thomas D.J., Kligerman A.D. Methylated trivalent arsenic species are genotoxic. Chem. Res. Toxicol. 2001;14:355–361. doi: 10.1021/tx000251l.
    1. Styblo M., Serves S.V., Cullen W.R., Thomas D.J. Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem. Res. Toxicol. 1997;10:27–33. doi: 10.1021/tx960139g.
    1. Chouchane S., Snow E.T. In vitro effect of arsenical compounds on glutathione-related enzymes. Chem. Res. Toxicol. 2001;14:517–522. doi: 10.1021/tx000123x.
    1. Lin S., Del Razo L.M., Styblo M., Wang C., Cullen W.R., Thomas D.J. Arsenicals inhibit thioredoxin reductase in cultured rat hepatocytes. Chem. Res. Toxicol. 2001;14:305–311. doi: 10.1021/tx0001878.
    1. Lin S., Cullen W.R., Thomas D.J. Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chem. Res. Toxicol. 1999;12:924–930. doi: 10.1021/tx9900775.
    1. Petrick J.S., Jagadish B., Mash E.A., Aposhian H.V. Monomethylarsonous acid (MMA(III)) and arsenite: LD(50) in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem. Res. Toxicol. 2001;14:651–656. doi: 10.1021/tx000264z.
    1. Fowler B.A., Chou S.J., Jones R.L., Chen C.J. Arsenic. In: Nordberg G.F., Fowler B.A., Nordberg M., Freiberg L., editors. Handbook on the Toxicology of Metals. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2007. pp. 367–443.
    1. Liu Z., Sanchez M.A., Jiang X., Boles E., Landfear S.M., Rosen B.P. Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem. Biophys. Res. Commun. 2006;351:424–430. doi: 10.1016/j.bbrc.2006.10.054.
    1. Sugawara-Yokoo M., Suzuki T., Matsuzaki T., Naruse T., Takata K. Presence of fructose transporter GLUT5 in the S3 proximal tubules in the rat kidney. Kidney Int. 1999;56:1022–1028. doi: 10.1046/j.1523-1755.1999.00635.x.
    1. Dominguez J.H., Camp K., Maianu L., Garvey W.T. Glucose transporters of rat proximal tubule: Differential expression and subcellular distribution. Am. J. Physiol. 1992;262:F807–F812.
    1. Lee T.C., Ho I.C., Lu W.J., Huang J.D. Enhanced expression of multidrug resistance-associated protein 2 and reduced expression of aquaglyceroporin 3 in an arsenic-resistant human cell line. J. Biol. Chem. 2006;281:18401–18407. doi: 10.1074/jbc.M601266200.
    1. Bedford J.J., Leader J.P., Walker R.J. Aquaporin expression in normal human kidney and in renal disease. J. Am. Soc. Nephrol. 2003;14:2581–2587. doi: 10.1097/01.ASN.0000089566.28106.F6.
    1. Lu W.J., Tamai I., Nezu J., Lai M.L., Huang J.D. Organic anion transporting polypeptide-C mediates arsenic uptake in HEK-293 cells. J. Biomed. Sci. 2006;13:525–533. doi: 10.1007/s11373-006-9071-0.
    1. Aleksunes L.M., Augustine L.M., Scheffer G.L., Cherrington N.J., Manautou J.E. Renal xenobiotic transporters are differentially expressed in mice following cisplatin treatment. Toxicology. 2008;250:82–88. doi: 10.1016/j.tox.2008.06.009.
    1. Roggenbeck B.A., Banerjee M., Leslie E.M. Cellular arsenic transport pathways in mammals. J. Environ. Sci. 2016;49:38–58. doi: 10.1016/j.jes.2016.10.001.
    1. Kala S.V., Kala G., Prater C.I., Sartorelli A.C., Lieberman M.W. Formation and urinary excretion of arsenic triglutathione and methylarsenic diglutathione. Chem. Res. Toxicol. 2004;17:243–249. doi: 10.1021/tx0342060.
    1. Roggenbeck B.A., Carew M.W., Charrois G.J., Douglas D.N., Kneteman N.M., Lu X., Le X.C., Leslie E.M. Characterization of arsenic hepatobiliary transport using sandwich-cultured human hepatocytes. Toxicol. Sci. 2015;145:307–320. doi: 10.1093/toxsci/kfv051.
    1. Yehiayan L., Stice S., Liu G., Matulis S., Boise L.H., Cai Y. Dimethylarsinothioyl glutathione as a metabolite in human multiple myeloma cell lines upon exposure to Darinaparsin. Chem. Res. Toxicol. 2014;27:754–764. doi: 10.1021/tx400386c.
    1. Thomas D.J. Unraveling arsenic—Glutathione connections. Toxicol. Sci. 2009;107:309–311. doi: 10.1093/toxsci/kfn257.
    1. Scott N., Hatlelid K.M., MacKenzie N.E., Carter D.E. Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem. Res. Toxicol. 1993;6:102–106. doi: 10.1021/tx00031a016.
    1. Delnomdedieu M., Basti M.M., Styblo M., Otvos J.D., Thomas D.J. Complexation of arsenic species in rabbit erythrocytes. Chem. Res. Toxicol. 1994;7:621–627. doi: 10.1021/tx00041a006.
    1. Liu J., Chen H., Miller D.S., Saavedra J.E., Keefer L.K., Johnson D.R., Klaassen C.D., Waalkes M.P. Overexpression of glutathione S-transferase II and multidrug resistance transport proteins is associated with acquired tolerance to inorganic arsenic. Mol. Pharmacol. 2001;60:302–309.
    1. Vernhet L., Seite M.P., Allain N., Guillouzo A., Fardel O. Arsenic induces expression of the multidrug resistance-associated protein 2 (MRP2) gene in primary rat and human hepatocytes. J. Pharmacol. Exp. Ther. 2001;298:234–239.
    1. Drobna Z., Walton F.S., Paul D.S., Xing W., Thomas D.J., Styblo M. Metabolism of arsenic in human liver: The role of membrane transporters. Arch. Toxicol. 2010;84:3–16. doi: 10.1007/s00204-009-0499-7.
    1. Gao Y., Pei Q.L., Li G.X., Han G., Tian F.J., Qin X.J., Zhang R., Hou W.S., Li X.Y. Effects of MRP2-GSH cotransport system on hepatic arsenic metabolism in rats. Chin. J. Ind. Hyg. Occup. Dis. 2006;24:278–280.
    1. Leslie E.M., Deeley R.G., Cole S.P. Multidrug resistance proteins: Role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol. Appl. Pharmacol. 2005;204:216–237. doi: 10.1016/j.taap.2004.10.012.
    1. Carew M.W., Leslie E.M. Selenium-dependent and -independent transport of arsenic by the human multidrug resistance protein 2 (MRP2/ABCC2): Implications for the mutual detoxification of arsenic and selenium. Carcinogenesis. 2010;31:1450–1455. doi: 10.1093/carcin/bgq125.
    1. Banerjee M., Carew M.W., Roggenbeck B.A., Whitlock B.D., Naranmandura H., Le X.C., Leslie E.M. A novel pathway for arsenic elimination: Human multidrug resistance protein 4 (MRP4/ABCC4) mediates cellular export of dimethylarsinic acid (DMAV) and the diglutathione conjugate of monomethylarsonous acid (MMAIII) Mol. Pharmacol. 2014;86:168–179. doi: 10.1124/mol.113.091314.
    1. Kimura A., Ishida Y., Hayashi T., Wada T., Yokoyama H., Sugaya T., Mukaida N., Kondo T. Interferon-gamma plays protective roles in sodium arsenite-induced renal injury by up-regulating intrarenal multidrug resistance-associated protein 1 expression. Am. J. Pathol. 2006;169:1118–1128. doi: 10.2353/ajpath.2006.060024.
    1. Chin K.V., Tanaka S., Darlington G., Pastan I., Gottesman M.M. Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. J. Biol. Chem. 1990;265:221–226.
    1. Liu J., Liu Y., Powell D.A., Waalkes M.P., Klaassen C.D. Multidrug-resistance mdr1a/1b double knockout mice are more sensitive than wild type mice to acute arsenic toxicity, with higher arsenic accumulation in tissues. Toxicology. 2002;170:55–62. doi: 10.1016/S0300-483X(01)00532-7.
    1. Xie Y., Liu J., Liu Y., Klaassen C.D., Waalkes M.P. Toxicokinetic and genomic analysis of chronic arsenic exposure in multidrug-resistance mdr1a/1b(-/-) double knockout mice. Mol. Cell. Biochem. 2004;255:11–18. doi: 10.1023/B:MCBI.0000007256.44450.8c.
    1. George B., You D., Joy M.S., Aleksunes L.M. Xenobiotic transporters and kidney injury. Adv. Drug Deliv. Rev. 2017 doi: 10.1016/j.addr.2017.01.005.
    1. Yang H., Guo D., Obianom O.N., Su T., Polli J.E., Shu Y. Multidrug and toxin extrusion proteins mediate cellular transport of cadmium. Toxicol. Appl. Pharmacol. 2017;314:55–62. doi: 10.1016/j.taap.2016.11.007.
    1. Prasad G.V., Rossi N.F. Arsenic intoxication associated with tubulointerstitial nephritis. Am. J. Kidney Dis. 1995;26:373–376. doi: 10.1016/0272-6386(95)90660-6.
    1. Robles-Osorio M.L., Sabath-Silva E., Sabath E. Arsenic-mediated nephrotoxicity. Ren. Fail. 2015;37:542–547. doi: 10.3109/0886022X.2015.1013419.
    1. Tsao D.A., Tseng W.C., Chang H.R. RKIP expression of liver and kidney after arsenic exposure. Environ. Toxicol. 2017;32:1079–1082. doi: 10.1002/tox.22291.
    1. Yeung K., Seitz T., Li S., Janosch P., McFerran B., Kaiser C., Fee F., Katsanakis K.D., Rose D.W., Mischak H., et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature. 1999;401:173–177.
    1. Yeung K., Janosch P., McFerran B., Rose D.W., Mischak H., Sedivy J.M., Kolch W. Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol. Cell. Biol. 2000;20:3079–3085. doi: 10.1128/MCB.20.9.3079-3085.2000.
    1. Odabaei G., Chatterjee D., Jazirehi A.R., Goodglick L., Yeung K., Bonavida B. Raf-1 kinase inhibitor protein: Structure, function, regulation of cell signaling, and pivotal role in apoptosis. Adv. Cancer Res. 2004;91:169–200.
    1. Singh R.D., Tiwari R., Khan H., Kumar A., Srivastava V. Arsenic exposure causes epigenetic dysregulation of IL-8 expression leading to proneoplastic changes in kidney cells. Toxicol. Lett. 2015;237:1–10. doi: 10.1016/j.toxlet.2015.05.014.
    1. Verdugo M., Ogra Y., Quiroz W. Mechanisms underlying the toxic effects of antimony species in human embryonic kidney cells (HEK-293) and their comparison with arsenic species. J. Toxicol. Sci. 2016;41:783–792. doi: 10.2131/jts.41.783.
    1. Sinha M., Manna P., Sil P.C. Arjunolic acid attenuates arsenic-induced nephrotoxicity. Pathophysiology. 2008;15:147–156. doi: 10.1016/j.pathophys.2008.03.001.
    1. Roy A., Manna P., Sil P.C. Prophylactic role of taurine on arsenic mediated oxidative renal dysfunction via MAPKs/ NF-kappaB and mitochondria dependent pathways. Free Radic. Res. 2009;43:995–1007. doi: 10.1080/10715760903164998.
    1. Gong X., Ivanov V.N., Davidson M.M., Hei T.K. Tetramethylpyrazine (TMP) protects against sodium arsenite-induced nephrotoxicity by suppressing ROS production, mitochondrial dysfunction, pro-inflammatory signaling pathways and programed cell death. Arch. Toxicol. 2015;89:1057–1070. doi: 10.1007/s00204-014-1302-y.
    1. Orihuela R., Kojima C., Tokar E.J., Person R.J., Xu Y., Qu W., Waalkes M.P. Oxidative DNA damage after acute exposure to arsenite and monomethylarsonous acid in biomethylation-deficient human cells. Toxicol. Mech. Methods. 2013;23:389–395. doi: 10.3109/15376516.2012.762570.
    1. Sasaki A., Oshima Y., Fujimura A. An approach to elucidate potential mechanism of renal toxicity of arsenic trioxide. Exp. Hematol. 2007;35:252–262. doi: 10.1016/j.exphem.2006.10.004.
    1. Peraza M.A., Carter D.E., Gandolfi A.J. Toxicity and metabolism of subcytotoxic inorganic arsenic in human renal proximal tubule epithelial cells (HK-2) Cell Biol. Exp. Toxicol. 2003;19:253–264. doi: 10.1023/B:CBTO.0000003970.60896.49.
    1. Lee C.H., Yu H.S. Role of mitochondria, ROS, and DNA damage in arsenic induced carcinogenesis. Front. Biosci. 2016;8:312–320.
    1. Ganger R., Garla R., Mohanty B.P., Bansal M.P., Garg M.L. Protective Effects of Zinc Against Acute Arsenic Toxicity by Regulating Antioxidant Defense System and Cumulative Metallothionein Expression. Biol. Trace Elem. Res. 2016;169:218–229. doi: 10.1007/s12011-015-0400-x.
    1. Cui X., Okayasu R. Arsenic accumulation, elimination, and interaction with copper, zinc and manganese in liver and kidney of rats. Food Chem. Toxicol. 2008;46:3646–3650. doi: 10.1016/j.fct.2008.09.040.
    1. Kreppel H., Bauman J.W., Liu J., McKim J.M., Jr., Klaassen C.D. Induction of metallothionein by arsenicals in mice. Fundam. Appl. Toxicol. 1993;20:184–189. doi: 10.1006/faat.1993.1025.
    1. Garla R., Mohanty B.P., Ganger R., Sudarshan M., Bansal M.P., Garg M.L. Metal stoichiometry of isolated and arsenic substituted metallothionein: PIXE and ESI-MS study. Biometals. 2013;26:887–896. doi: 10.1007/s10534-013-9665-8.
    1. Garla R., Kaur N., Bansal M.P., Garg M.L., Mohanty B.P. Quantum mechanical treatment of As3+-thiol model compounds: Implication for the core structure of As(III)-metallothionein. J. Mol. Model. 2017;23:78. doi: 10.1007/s00894-017-3247-6.
    1. Qu W., Waalkes M.P. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure. Toxicol. Appl. Pharmacol. 2015;282:267–274. doi: 10.1016/j.taap.2014.11.014.
    1. Garla R., Ganger R., Mohanty B.P., Verma S., Bansal M.P., Garg M.L. Metallothionein does not sequester arsenic(III) ions in condition of acute arsenic toxicity. Toxicology. 2016;366–367:68–73. doi: 10.1016/j.tox.2016.08.008.
    1. Weidemann D., Kuo C.C., Navas-Acien A., Abraham A.G., Weaver V., Fadrowski J. Association of arsenic with kidney function in adolescents and young adults: Results from the National Health and Nutrition Examination Survey 2009–2012. Environ. Res. 2015;140:317–324. doi: 10.1016/j.envres.2015.03.030.
    1. Hsueh Y.M., Chung C.J., Shiue H.S., Chen J.B., Chiang S.S., Yang M.H., Tai C.W., Su C.T. Urinary arsenic species and CKD in a Taiwanese population: A case-control study. Am. J. Kidney Dis. 2009;54:859–870. doi: 10.1053/j.ajkd.2009.06.016.
    1. Vaziri N.D., Upham T., Barton C.H. Hemodialysis clearance of arsenic. Clin. Toxicol. 1980;17:451–456. doi: 10.3109/15563658008989995.
    1. Zheng L.Y., Umans J.G., Yeh F., Francesconi K.A., Goessler W., Silbergeld E.K., Bandeen-Roche K., Guallar E., Howard B.V., Weaver V.M., et al. The association of urine arsenic with prevalent and incident chronic kidney disease: Evidence from the Strong Heart Study. Epidemiology. 2015;26:601–612. doi: 10.1097/EDE.0000000000000313.
    1. Faroon O., Ashizawa A., Wright S., Tucker P., Jenkins K., Ingerman L., Rudisill C. U.S. Department of Health and Human Services, Public Health Service. Centers for Disease Control and Prevention; Agency for Toxic Substances and Disease Registry (ATSDR); Atlanta, GA, USA: 2008. Toxicological Profile for Cadmium.
    1. World Health Organization (WHO) Cadmium—Environmental Health Criteria 134. World Health Organization (WHO); Geneva, Switzerland: 1992.
    1. Friberg L., Piscator M., Nordberg G., Kjellstrom T. Cadmium in the Environmnent. 2nd ed. CRC Press; Cleveland, OH, USA: 1974.
    1. Elinder C.G., Kjellstrom T., Lind B., Linnman L., Piscator M., Sundstedt K. Cadmium exposure from smoking cigarettes: Variations with time and country where purchased. Environ. Res. 1983;32:220–227. doi: 10.1016/0013-9351(83)90209-8.
    1. Elinder C.G., Lind B., Kjellstrom T., Linnman L., Friberg L. Cadmium in kidney cortex, liver, and pancreas from Swedish autopsies. Estimation of biological half time in kidney cortex, considering calorie intake and smoking habits. Arch. Environ. Health. 1976;31:292–302. doi: 10.1080/00039896.1976.10667239.
    1. Jarup L., Berglund M., Elinder C.G., Nordberg G., Vahter M. Health effects of cadmium exposure—A review of the literature and a risk estimate. Scand. J. Work Environ. Health. 1998;24(Suppl. S1):1–51.
    1. Olsson I.M., Bensryd I., Lundh T., Ottosson H., Skerfving S., Oskarsson A. Cadmium in blood and urine—Impact of sex, age, dietary intake, iron status, and former smoking—Association of renal effects. Environ. Health Perspect. 2002;110:1185–1190. doi: 10.1289/ehp.021101185.
    1. Centers for Disease Control (CDC) Community Futures Development Corporation (CFDC) Fourth National Report on Human Exposure to Environmental Chemicals. Centers for Disease Control (CDC); Atlanta, GA, USA: 2009. pp. 218–226.
    1. Rabenstein D.L., Isab A.A., Kadima W., Mohanakrishnan P. A proton nuclear magnetic resonance study of the interaction of cadmium with human erythrocytes. Biochim. Biophys. Acta. 1983;762:531–541. doi: 10.1016/0167-4889(83)90057-5.
    1. Rabenstein D.L. Metal complexes of glutathione and their biological significance. In: Dolphin D., Auromovibic O., Poulson R., editors. Glutathione: Chemical, Biochemical and Medical Aspects, Coenzymes and Cofactors. Volume 3. Wiley; New York, NY, USA: 1989. pp. 147–186.
    1. Wang Y., Zalups R.K., Barfuss D.W. Potential mechanisms involved in the absorptive transport of cadmium in isolated perfused rabbit renal proximal tubules. Toxicol. Lett. 2010;193:61–68. doi: 10.1016/j.toxlet.2009.12.007.
    1. Zalups R.K., Ahmad S. Molecular handling of cadmium in transporting epithelia. Toxicol. Appl. Pharmacol. 2003;186:163–188. doi: 10.1016/S0041-008X(02)00021-2.
    1. Soodvilai S., Nantavishit J., Muanprasat C., Chatsudthipong V. Renal organic cation transporters mediated cadmium-induced nephrotoxicity. Toxicol. Lett. 2011;204:38–42. doi: 10.1016/j.toxlet.2011.04.005.
    1. Thevenod F., Ciarimboli G., Leistner M., Wolff N.A., Lee W.K., Schatz I., Keller T., Al-Monajjed R., Gorboulev V., Koepsell H. Substrate- and cell contact-dependent inhibitor affinity of human organic cation transporter 2: Studies with two classical organic cation substrates and the novel substrate Cd2+ Mol. Pharm. 2013;10:3045–3056. doi: 10.1021/mp400113d.
    1. Sweet D.H., Miller D.S., Pritchard J.B. Basolateral localization of organic cation transporter 2 in intact renal proximal tubules. Am. J. Physiol. Ren. Physiol. 2000;279:F826–F834.
    1. Karbach U., Kricke J., Meyer-Wentrup F., Gorboulev V., Volk C., Loffing-Cueni D., Kaissling B., Bachmann S., Koepsell H. Localization of organic cation transporters OCT1 and OCT2 in rat kidney. Am. J. Physiol. Ren. Physiol. 2000;279:F679–F687.
    1. Felley-Bosco E., Diezi J. Fate of cadmium in rat renal tubules: A micropuncture study. Toxicol. Appl. Pharmacol. 1989;98:243–251. doi: 10.1016/0041-008X(89)90229-9.
    1. Barbier O., Jacquillet G., Tauc M., Poujeol P., Cougnon M. Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo. Am. J. Physiol. Ren. Physiol. 2004;287:F1067–F1075. doi: 10.1152/ajprenal.00120.2004.
    1. Dudley R.E., Gammal L.M., Klaassen C.D. Cadmium-induced hepatic and renal injury in chronically exposed rats: Likely role of hepatic cadmium-metallothionein in nephrotoxicity. Toxicol. Appl. Pharmacol. 1985;77:414–426. doi: 10.1016/0041-008X(85)90181-4.
    1. Erfurt C., Roussa E., Thevenod F. Apoptosis by Cd2+ or CdMT in proximal tubule cells: Different uptake routes and permissive role of endo/lysosomal CdMT uptake. Am. J. Physiol. Cell Physiol. 2003;285:C1367–C1376. doi: 10.1152/ajpcell.00217.2003.
    1. Murakami M., Sano K., Webb M. The effect of l-cysteine on the portion-selective uptake of cadmium in the renal proximal tubule. Arch. Toxicol. 1987;60:365–369. doi: 10.1007/BF00295756.
    1. Dorian C., Gattone V.H., 2nd, Klaassen C.D. Accumulation and degradation of the protein moiety of cadmium-metallothionein (CdMT) in the mouse kidney. Toxicol. Appl. Pharmacol. 1992;117:242–248. doi: 10.1016/0041-008X(92)90243-L.
    1. Dorian C., Gattone V.H., 2nd, Klaasen C.D. Renal cadmium deposition and injury as a result of accumulation of cadmium-metallothionein (CdMT) by the proximal convoluted tubules—A light microscopic autoradiography study with 109CdMT. Toxicol. Appl. Pharmacol. 1992;114:173–181. doi: 10.1016/0041-008X(92)90066-2.
    1. Foulkes E.C. Renal tubular transport of cadmium-metallothionein. Toxicol. Appl. Pharmacol. 1978;45:505–512. doi: 10.1016/0041-008X(78)90112-6.
    1. Nordberg M., Jin T., Nordberg G.F. Cadmium, metallothionein and renal tubular toxicity. IARC Sci. Publ. 1992;118:293–297.
    1. Webb M. Role of metallothionein in cadmium metabolism. In: Foulkes E.C., editor. Cadmium. Springer; Berlin, Germany: New York, NY, USA: 1986.
    1. Thevenod F. Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals. 2010;23:857–875. doi: 10.1007/s10534-010-9309-1.
    1. Thevenod F. Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol. 2003;93:87–93. doi: 10.1159/000070241.
    1. Nordberg G.F., Goyer R., Nordberg M. Comparative toxicity of cadmium-metallothionein and cadmium chloride on mouse kidney. Arch. Pathol. 1975;99:192–197.
    1. Cherian M.G., Nordberg M. Cellular adaptation in metal toxicology and metallothionein. Toxicology. 1983;28:1–15.
    1. Felley-Bosco E., Diezi J. Fate of cadmium in rat renal tubules: A microinjection study. Toxicol. Appl. Pharmacol. 1987;91:204–211.
    1. Murakami M., Cain K., Webb M. Cadmium-metallothionein-induced nephropathy: A morphological and autoradiographic study of cadmium distribution, the development of tubular damage and subsequent cell regeneration. J. Appl. Toxicol. 1983;3:237–244.
    1. Zalups R.K., Gelein R.M., Cherian M.G. Shifts in the dose-effect relationship for the nephropathy induced by cadmium-metallothionein in rats after a reduction in renal mass. J. Pharmacol. Exp. Ther. 1992;262:1256–1266.
    1. Abouhamed M., Wolff N.A., Lee W.K., Smith C.P., Thevenod F. Knockdown of endosomal/lysosomal divalent metal transporter 1 by RNA interference prevents cadmium-metallothionein-1 cytotoxicity in renal proximal tubule cells. Am. J. Physiol. Ren. Physiol. 2007;293:F705–F712.
    1. Ferguson C.J., Wareing M., Ward D.T., Green R., Smith C.P., Riccardi D. Cellular localization of divalent metal transporter DMT-1 in rat kidney. Am. J. Physiol. Ren. Physiol. 2001;280:F803–F814.
    1. Scheuhammer A.M., Cherian M.G. Quantification of metallothioneins by a silver-saturation method. Toxicol. Appl. Pharmacol. 1986;82:417–425.
    1. Wang B., Schneider S.N., Dragin N., Girijashanker K., Dalton T.P., He L., Miller M.L., Stringer K.F., Soleimani M., Richardson D.D., et al. Enhanced cadmium-induced testicular necrosis and renal proximal tubule damage caused by gene-dose increase in a Slc39a8-transgenic mouse line. Am. J. Physiol. Cell Physiol. 2007;292:C1523–C1535.
    1. Girijashanker K., He L., Soleimani M., Reed J.M., Li H., Liu Z., Wang B., Dalton T.P., Nebert D.W. Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: Similarities to the ZIP8 transporter. Mol. Pharmacol. 2008;73:1413–1423.
    1. Fujishiro H., Okugaki S., Kubota K., Fujiyama T., Miyataka H., Himeno S. The role of ZIP8 down-regulation in cadmium-resistant metallothionein-null cells. J. Appl. Toxicol. 2009;29:367–373. doi: 10.1002/jat.1419.
    1. Fujishiro H., Yano Y., Takada Y., Tanihara M., Himeno S. Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics. 2012;4:700–708. doi: 10.1039/c2mt20024d.
    1. He L., Wang B., Hay E.B., Nebert D.W. Discovery of ZIP transporters that participate in cadmium damage to testis and kidney. Toxicol. Appl. Pharmacol. 2009;238:250–257. doi: 10.1016/j.taap.2009.02.017.
    1. Zhang R., Witkowska K., Afonso Guerra-Assuncao J., Ren M., Ng F.L., Mauro C., Tucker A.T., Caulfield M.J., Ye S. A blood pressure-associated variant of the SLC39A8 gene influences cellular cadmium accumulation and toxicity. Hum. Mol. Genet. 2016;25:4117–4126. doi: 10.1093/hmg/ddw236.
    1. Otsuka M., Matsumoto T., Morimoto R., Arioka S., Omote H., Moriyama Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl. Acad. Sci. USA. 2005;102:17923–17928. doi: 10.1073/pnas.0506483102.
    1. Masuda S., Terada T., Yonezawa A., Tanihara Y., Kishimoto K., Katsura T., Ogawa O., Inui K. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J. Am. Soc. Nephrol. 2006;17:2127–2135. doi: 10.1681/ASN.2006030205.
    1. Carriere P., Mantha M., Champagne-Paradis S., Jumarie C. Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers. Biometals. 2011;24:857–874. doi: 10.1007/s10534-011-9440-7.
    1. Prozialeck W.C., Edwards J.R. Early biomarkers of cadmium exposure and nephrotoxicity. Biometals. 2010;23:793–809. doi: 10.1007/s10534-010-9288-2.
    1. Elinder C.G., Gerhardsson L., Oberdorster G. Biological monitoring of toxic metals: Overview. In: Clarkson T.W., Friberg L., Nordberg G.F., Sager P.R., editors. Biological Monitoring of Toxic Metals. Plenum Press; London, UK: 1988. pp. 1–71.
    1. Nordberg G.F., Nogawa K., Nordberg M., Friedmann J.M. Cadmium. In: Nordberg G.F., Fowler B.A., Nordberg M., Friberg L., editors. Handbook on the Toxicology of Metals. Elsevier; Amsterdam, The Netherlands: 2007. pp. 445–486.
    1. Nordberg G.F., Nordberg M. Biological monitoring of cadmium. In: Clarkson T.W., Friberg L., Nordberg G.F., Sager P.R., editors. Biological Monitoring of Toxic Metals. Plenum Press; New York, NY, USA: 2001. pp. 151–168.
    1. Johri N., Jacquillet G., Unwin R. Heavy metal poisoning: The effects of cadmium on the kidney. Biometals. 2010;23:783–792. doi: 10.1007/s10534-010-9328-y.
    1. Prozialeck W.C., VanDreel A., Ackerman C.D., Stock I., Papaeliou A., Yasmine C., Wilson K., Lamar P.C., Sears V.L., Gasiorowski J.Z., et al. Evaluation of cystatin C as an early biomarker of cadmium nephrotoxicity in the rat. Biometals. 2016;29:131–146. doi: 10.1007/s10534-015-9903-3.
    1. Akesson A., Lundh T., Vahter M., Bjellerup P., Lidfeldt J., Nerbrand C., Samsioe G., Stromberg U., Skerfving S. Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ. Health Perspect. 2005;113:1627–1631. doi: 10.1289/ehp.8033.
    1. Tsuchiya K., Iwao S., Sugita M., Sakurai H. Increased urinary beta 2-microglobulin in cadmium exposure: Dose-effect relationship and biological significance of beta 2-microglobulin. Environ. Health Perspect. 1979;28:147–153.
    1. Jin T., Nordberg G., Wu X., Ye T., Kong Q., Wang Z., Zhuang F., Cai S. Urinary N-acetyl-beta-d-glucosaminidase isoenzymes as biomarker of renal dysfunction caused by cadmium in a general population. Environ. Res. 1999;81:167–173. doi: 10.1006/enrs.1999.3959.
    1. Prozialeck W.C., Vaidya V.S., Liu J., Waalkes M.P., Edwards J.R., Lamar P.C., Bernard A.M., Dumont X., Bonventre J.V. Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity. Kidney Int. 2007;72:985–993. doi: 10.1038/sj.ki.5002467.
    1. Jarup L., Alfven T. Low level cadmium exposure, renal and bone effects—The OSCAR study. Biometals. 2004;17:505–509. doi: 10.1023/B:BIOM.0000045729.68774.a1.
    1. Jarup L., Hellstrom L., Alfven T., Carlsson M.D., Grubb A., Persson B., Pettersson C., Spang G., Schutz A., Elinder C.G. Low level exposure to cadmium and early kidney damage: The OSCAR study. Occup. Environ. Med. 2000;57:668–672. doi: 10.1136/oem.57.10.668.
    1. Noonan C.W., Sarasua S.M., Campagna D., Kathman S.J., Lybarger J.A., Mueller P.W. Effects of exposure to low levels of environmental cadmium on renal biomarkers. Environ. Health Perspect. 2002;110:151–155. doi: 10.1289/ehp.02110151.
    1. Mortensen M.E., Wong L.Y., Osterloh J.D. Smoking status and urine cadmium above levels associated with subclinical renal effects in U.S. adults without chronic kidney disease. Int. J. Hyg. Environ. Health. 2011;214:305–310. doi: 10.1016/j.ijheh.2011.03.004.
    1. Huang M., Choi S.J., Kim D.W., Kim N.Y., Park C.H., Yu S.D., Kim D.S., Park K.S., Song J.S., Kim H., et al. Risk assessment of low-level cadmium and arsenic on the kidney. J. Toxicol. Environ. Health A. 2009;72:1493–1498. doi: 10.1080/15287390903213095.
    1. Sabolic I., Ljubojevic M., Herak-Kramberger C.M., Brown D. Cd-MT causes endocytosis of brush-border transporters in rat renal proximal tubules. Am. J. Physiol. Ren. Physiol. 2002;283:F1389–F1402. doi: 10.1152/ajprenal.00066.2002.
    1. Herak-Kramberger C.M., Brown D., Sabolic I. Cadmium inhibits vacuolar H(+)-ATPase and endocytosis in rat kidney cortex. Kidney Int. 1998;53:1713–1726. doi: 10.1046/j.1523-1755.1998.00914.x.
    1. Wolff N.A., Abouhamed M., Verroust P.J., Thevenod F. Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells. J. Pharmacol. Exp. Ther. 2006;318:782–791. doi: 10.1124/jpet.106.102574.
    1. Santoyo-Sanchez M.P., Pedraza-Chaverri J., Molina-Jijon E., Arreola-Mendoza L., Rodriguez-Munoz R., Barbier O.C. Impaired endocytosis in proximal tubule from subchronic exposure to cadmium involves angiotensin II type 1 and cubilin receptors. BMC Nephrol. 2013;14:211. doi: 10.1186/1471-2369-14-211.
    1. Yang L.Y., Wu K.H., Chiu W.T., Wang S.H., Shih C.M. The cadmium-induced death of mesangial cells results in nephrotoxicity. Autophagy. 2009;5:571–572. doi: 10.4161/auto.5.4.8311.
    1. Liu Y., Templeton D.M. Cadmium activates CaMK-II and initiates CaMK-II-dependent apoptosis in mesangial cells. FEBS Lett. 2007;581:1481–1486. doi: 10.1016/j.febslet.2007.03.003.
    1. Jarup L., Persson B., Elinder C.G. Decreased glomerular filtration rate in solderers exposed to cadmium. Occup. Environ. Med. 1995;52:818–822. doi: 10.1136/oem.52.12.818.
    1. Brzoska M.M., Kaminski M., Dziki M., Moniuszko-Jakoniuk J. Changes in the structure and function of the kidney of rats chronically exposed to cadmium. II. Histoenzymatic studies. Arch. Toxicol. 2004;78:226–231.
    1. Jarup L., Elinder C.G. Incidence of renal stones among cadmium exposed battery workers. Br. J. Ind. Med. 1993;50:598–602. doi: 10.1136/oem.50.7.598.
    1. Aoshima K., Kasuya M. Preliminary study on serum levels of 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D in cadmium-induced renal tubular dysfunction. Toxicol. Lett. 1991;57:91–99.
    1. Tsuritani I., Honda R., Ishizaki M., Yamada Y., Kido T., Nogawa K. Impairment of vitamin D metabolism due to environmental cadmium exposure, and possible relevance to sex-related differences in vulnerability to the bone damage. J. Toxicol. Environ. Health. 1992;37:519–533. doi: 10.1080/15287399209531690.
    1. Galazyn-Sidorczuk M., Brzoska M.M., Jurczuk M., Moniuszko-Jakoniuk J. Oxidative damage to proteins and DNA in rats exposed to cadmium and/or ethanol. Chem. Biol. Interact. 2009;180:31–38. doi: 10.1016/j.cbi.2009.01.014.
    1. Matovic V., Buha A., Ethukic-Cosic D., Bulat Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem. Toxicol. 2015;78:130–140. doi: 10.1016/j.fct.2015.02.011.
    1. So K.Y., Oh S.H. Cadmium-induced heme-oxygenase-1 expression plays dual roles in autophagy and apoptosis and is regulated by both PKC-delta and PKB/Akt activation in NRK52E kidney cells. Toxicology. 2016;370:49–59. doi: 10.1016/j.tox.2016.09.010.
    1. Chen Z., Gu D., Zhou M., Shi H., Yan S., Cai Y. Regulatory role of miR-125a/b in the suppression by selenium of cadmium-induced apoptosis via the mitochondrial pathway in LLC-PK1 cells. Chem. Biol. Interact. 2016;243:35–44. doi: 10.1016/j.cbi.2015.11.016.
    1. Babaknejad N., Moshtaghie A.A., Nayeri H., Hani M., Bahrami S. Protective Role of Zinc and Magnesium against Cadmium Nephrotoxicity in Male Wistar Rats. Biol. Trace Elem. Res. 2016;174:112–120. doi: 10.1007/s12011-016-0671-x.
    1. Lin Y.S., Ho W.C., Caffrey J.L., Sonawane B. Low serum zinc is associated with elevated risk of cadmium nephrotoxicity. Environ. Res. 2014;134:33–38. doi: 10.1016/j.envres.2014.06.013.
    1. Jihen el H., Imed M., Fatima H., Abdelhamid K. Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver and kidney of the rat: Histology and Cd accumulation. Food Chem. Toxicol. 2008;46:3522–3527. doi: 10.1016/j.fct.2008.08.037.
    1. Liu J., Liu Y., Habeebu S.S., Klaassen C.D. Metallothionein-null mice are highly susceptible to the hematotoxic and immunotoxic effects of chronic CdCl2 exposure. Toxicol. Appl. Pharmacol. 1999;159:98–108. doi: 10.1006/taap.1999.8718.
    1. Brzoska M.M., Roszczenko A., Galazyn-Sidorczuk M., Majewska K. Zinc supplementation can protect from enhanced risk of femoral neck fracture in male rats chronically exposed to cadmium. Exp. Toxicol. Pathol. 2011;63:491–498. doi: 10.1016/j.etp.2010.03.010.
    1. Jihen el H., Fatima H., Nouha A., Baati T., Imed M., Abdelhamid K. Cadmium retention increase: A probable key mechanism of the protective effect of zinc on cadmium-induced toxicity in the kidney. Toxicol. Lett. 2010;196:104–109. doi: 10.1016/j.toxlet.2010.04.006.
    1. Jacquillet G., Barbier O., Cougnon M., Tauc M., Namorado M.C., Martin D., Reyes J.L., Poujeol P. Zinc protects renal function during cadmium intoxication in the rat. Am. J. Physiol. Ren. Physiol. 2006;290:F127–F137. doi: 10.1152/ajprenal.00366.2004.
    1. Zhang D., Liu J., Gao J., Shahzad M., Han Z., Wang Z., Li J., Sjolinder H. Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells. PLoS ONE. 2014;9:e103427. doi: 10.1371/journal.pone.0103427.
    1. Matovic V., Buha A., Bulat Z., Dukic-Cosic D. Cadmium toxicity revisited: Focus on oxidative stress induction and interactions with zinc and magnesium. Arhiv Hig. Rada Toksikol. 2011;62:65–76. doi: 10.2478/10004-1254-62-2011-2075.
    1. Matovic V., Plamenac Bulat Z., Djukic-Cosic D., Soldatovic D. Antagonism between cadmium and magnesium: A possible role of magnesium in therapy of cadmium intoxication. Magnes. Res. 2010;23:19–26.
    1. Quamme G.A. Free cadmium activity in renal epithelial cells is enhanced by Mg2+ depletion. Kidney Int. 1992;41:1237–1244. doi: 10.1038/ki.1992.185.
    1. Djukic-Cosic D., Ninkovic M., Malicevic Z., Matovic V., Soldatovic D. Effect of magnesium pretreatment on reduced glutathione levels in tissues of mice exposed to acute and subacute cadmium intoxication: A time course study. Magnes. Res. 2007;20:177–186.
    1. Huang M., Choi S.J., Kim D.W., Kim N.Y., Bae H.S., Yu S.D., Kim D.S., Kim H., Choi B.S., Yu I.J., et al. Evaluation of factors associated with cadmium exposure and kidney function in the general population. Environ. Toxicol. 2011;28:563–570. doi: 10.1002/tox.20750.
    1. Ferraro P.M., Costanzi S., Naticchia A., Sturniolo A., Gambaro G. Low level exposure to cadmium increases the risk of chronic kidney disease: Analysis of the NHANES 1999–2006. BMC Public Health. 2010;10:304. doi: 10.1186/1471-2458-10-304.
    1. Navas-Acien A., Tellez-Plaza M., Guallar E., Muntner P., Silbergeld E., Jaar B., Weaver V. Blood cadmium and lead and chronic kidney disease in US adults: A joint analysis. Am. J. Epidemiol. 2009;170:1156–1164. doi: 10.1093/aje/kwp248.
    1. Hellstrom L., Elinder C.G., Dahlberg B., Lundberg M., Jarup L., Persson B., Axelson O. Cadmium exposure and end-stage renal disease. Am. J. Kidney Dis. 2001;38:1001–1008. doi: 10.1053/ajkd.2001.28589.
    1. Chen B., Lamberts L.V., Behets G.J., Zhao T., Zhou M., Liu G., Hou X., Guan G., D’Haese P.C. Selenium, lead, and cadmium levels in renal failure patients in China. Biol. Trace Elem. Res. 2009;131:1–12. doi: 10.1007/s12011-009-8340-y.
    1. Gonick H.C. Nephrotoxicity of cadmium & lead. Ind. J. Med. Res. 2008;128:335–352.
    1. Lauwerys R., Bernard A., Cardenas A. Monitoring of early nephrotoxic effects of industrial chemicals. Toxicol. Lett. 1992;64–65:33–42. doi: 10.1016/0378-4274(92)90170-O.
    1. Ginsberg G.L. Cadmium risk assessment in relation to background risk of chronic kidney disease. J. Toxicol. Environ. Health A. 2012;75:374–390. doi: 10.1080/15287394.2012.670895.
    1. Hwangbo Y., Weaver V.M., Tellez-Plaza M., Guallar E., Lee B.K., Navas-Acien A. Blood cadmium and estimated glomerular filtration rate in Korean adults. Environ. Health Perspect. 2011;119:1800–1805. doi: 10.1289/ehp.1003054.
    1. Porter G.A. Risk factors for toxic nephropathies. Toxicol. Lett. 1989;46:269–279. doi: 10.1016/0378-4274(89)90135-5.
    1. Roels H.A., Hoet P., Lison D. Usefulness of biomarkers of exposure to inorganic mercury, lead, or cadmium in controlling occupational and environmental risks of nephrotoxicity. Ren. Fail. 1999;21:251–262. doi: 10.3109/08860229909085087.
    1. Mueller P.W., Price R.G., Finn W.F. New approaches for detecting thresholds of human nephrotoxicity using cadmium as an example. Environ. Health Perspect. 1998;106:227–230. doi: 10.1289/ehp.98106227.
    1. Jayatilake N., Mendis S., Maheepala P., Mehta F.R. Chronic kidney disease of uncertain aetiology: Prevalence and causative factors in a developing country. BMC Nephrol. 2013;14:180. doi: 10.1186/1471-2369-14-180.
    1. Kim N.H., Hyun Y.Y., Lee K.B., Chang Y., Ryu S., Oh K.H., Ahn C. Environmental heavy metal exposure and chronic kidney disease in the general population. J. Korean Med. Sci. 2015;30:272–277. doi: 10.3346/jkms.2015.30.3.272.
    1. Thomas L.D., Elinder C.G., Wolk A., Akesson A. Dietary cadmium exposure and chronic kidney disease: A population-based prospective cohort study of men and women. Int. J. Hyg. Environ. Health. 2014;217:720–725. doi: 10.1016/j.ijheh.2014.03.001.
    1. Satarug S., Vesey D.A., Gobe G.C. Kidney Cadmium Toxicity, Diabetes and High Blood Pressure: The Perfect Storm. Tohoku J. Exp. Med. 2017;241:65–87. doi: 10.1620/tjem.241.65.
    1. Hayslett J.P. Functional adaptation to reduction in renal mass. Physiol. Rev. 1979;59:137–164.
    1. Zalups R.K., Fraser J., Koropatnick J. Enhanced transcription of metallothionein genes in rat kidney: Effect of uninephrectomy and compensatory renal growth. Am. J. Physiol. 1995;268:F643–F650.
    1. Edwards J.R., Prozialeck W.C. Cadmium, diabetes and chronic kidney disease. Toxicol. Appl. Pharmacol. 2009;238:289–293. doi: 10.1016/j.taap.2009.03.007.
    1. Nordberg G.F., Jin T., Wu X., Lu J., Chen L., Lei L., Hong F., Nordberg M. Prevalence of kidney dysfunction in humans-relationship to cadmium dose, metallothionein, immunological and metabolic factors. Biochimie. 2009;91:1282–1285. doi: 10.1016/j.biochi.2009.06.014.
    1. Li Y., Zhang Y., Wang W., Wu Y. Association of urinary cadmium with risk of diabetes: A meta-analysis. Environ. Sci. Pollut. Res. Int. 2017;24:10083–10090. doi: 10.1007/s11356-017-8610-8.
    1. Schrijvers B.F., De Vriese A.S., Flyvbjerg A. From hyperglycemia to diabetic kidney disease: The role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr. Rev. 2004;25:971–1010. doi: 10.1210/er.2003-0018.
    1. Bell R.R., Early J.L., Nonavinakere V.K., Mallory Z. Effect of cadmium on blood glucose level in the rat. Toxicol. Lett. 1990;54:199–205. doi: 10.1016/0378-4274(90)90184-N.
    1. Chapatwala K.D., Boykin M., Butts A., Rajanna B. Effect of intraperitoneally injected cadmium on renal and hepatic gluconeogenic enzymes in rats. Drug Chem. Toxicol. 1982;5:305–317. doi: 10.3109/01480548209041060.
    1. Lei L.J., Jin T.Y., Zhou Y.F. Insulin expression in rats exposed to cadmium. Biomed. Environ. Sci. 2007;20:295–301.
    1. Merali Z., Singhal R.L. Diabetogenic effects of chronic oral cadmium adminstration to neonatal rats. Br. J. Pharmacol. 1980;69:151–157. doi: 10.1111/j.1476-5381.1980.tb10895.x.
    1. Lei L.J., Jin T.Y., Zhou Y.F. Effects of cadmium on levels of insulin in rats. J. Hyg. Res. 2005;34:394–396.
    1. Jin T., Nordberg G., Sehlin J., Wallin H., Sandberg S. The susceptibility to nephrotoxicity of streptozotocin-induced diabetic rats subchronically exposed to cadmium chloride in drinking water. Toxicology. 1999;142:69–75. doi: 10.1016/S0300-483X(99)00135-3.
    1. Bernard A., Schadeck C., Cardenas A., Buchet J.P., Lauwerys R. Potentiation of diabetic glomerulopathy in uninephrectomized rats subchronically exposed to cadmium. Toxicol. Lett. 1991;58:51–57. doi: 10.1016/0378-4274(91)90190-H.
    1. Jin T., Nordberg G.F., Sehlin J., Leffler P., Wu J. The susceptibility of spontaneously diabetic mice to cadmium-metallothionein nephrotoxicity. Toxicology. 1994;89:81–90. doi: 10.1016/0300-483X(94)90216-X.
    1. Haswell-Elkins M., Satarug S., O'Rourke P., Moore M., Ng J., McGrath V., Walmby M. Striking association between urinary cadmium level and albuminuria among Torres Strait Islander people with diabetes. Environ. Res. 2008;106:379–383. doi: 10.1016/j.envres.2007.10.004.
    1. Buchet J.P., Lauwerys R., Roels H., Bernard A., Bruaux P., Claeys F., Ducoffre G., de Plaen P., Staessen J., Amery A., et al. Renal effects of cadmium body burden of the general population. Lancet. 1990;336:699–702. doi: 10.1016/0140-6736(90)92201-R.
    1. Satarug S., Ujjin P., Vanavanitkun Y., Baker J.R., Moore M.R. Influence of body iron store status and cigarette smoking on cadmium body burden of healthy Thai women and men. Toxicol. Lett. 2004;148:177–185. doi: 10.1016/j.toxlet.2003.09.015.
    1. Berglund M., Akesson A., Nermell B., Vahter M. Intestinal absorption of dietary cadmium in women depends on body iron stores and fiber intake. Environ. Health Perspect. 1994;102:1058–1066. doi: 10.1289/ehp.941021058.
    1. Akesson A., Berglund M., Schutz A., Bjellerup P., Bremme K., Vahter M. Cadmium exposure in pregnancy and lactation in relation to iron status. Am. J. Public Health. 2002;92:284–287. doi: 10.2105/AJPH.92.2.284.
    1. Kim D.W., Kim K.Y., Choi B.S., Youn P., Ryu D.Y., Klaassen C.D., Park J.D. Regulation of metal transporters by dietary iron, and the relationship between body iron levels and cadmium uptake. Arch. Toxicol. 2007;81:327–334. doi: 10.1007/s00204-006-0160-7.
    1. Vesey D.A. Transport pathways for cadmium in the intestine and kidney proximal tubule: Focus on the interaction with essential metals. Toxicol. Lett. 2010;198:13–19. doi: 10.1016/j.toxlet.2010.05.004.
    1. DeWitt R.D. Pediatric lead exposure and the water crisis in Flint, Michigan. J. Am. Acad. Phys. Assist. 2017;30:43–46. doi: 10.1097/01.JAA.0000511794.60054.eb.
    1. Kennedy C., Yard E., Dignam T., Buchanan S., Condon S., Brown M.J., Raymond J., Rogers H.S., Sarisky J., de Castro R., et al. Blood Lead Levels Among Children Aged. MMWR. 2016;65:650–654.
    1. Shah K.K., Oleske J.M., Gomez H.F., Davidow A.L., Bogden J.D. Blood Lead Concentrations of Children in the United States: A Comparison of States Using Two Very Large Databases. J. Pediatr. 2017 doi: 10.1016/j.jpeds.2017.01.059.
    1. Centers of Disease Control and Prevention (CDC) Very high blood lead levels among adults—United States, 2002–2011. MMWR. 2013;62:967–971.
    1. Raymond J., Brown M.J. Childhood Blood Lead Levels in Children Aged. MMWR. 2017;66:1–10.
    1. Alarcon W.A. Elevated Blood Lead Levels Among Employed Adults—United States, 1994–2013. MMWR. 2016;63:59–65. doi: 10.15585/mmwr.mm6355a5.
    1. Goyer R.A. Lead toxicity: Current concerns. Environ. Health Perspect. 1993;100:177–187. doi: 10.1289/ehp.93100177.
    1. Dapul H., Laraque D. Lead poisoning in children. Adv. Pediatr. 2014;61:313–333. doi: 10.1016/j.yapd.2014.04.004.
    1. Fowler B.A. Mechanisms of Kidney Cell Injury from Metals. Environ. Health Perspect. 1992;100:57–63. doi: 10.1289/ehp.9310057.
    1. Smith D.R., Kahng M.W., Quintanilla-Vega B., Fowler B.A. High-affinity renal lead-binding proteins in environmentally-exposed humans. Chem. Biol. Interact. 1998;115:39–52. doi: 10.1016/S0009-2797(98)00060-X.
    1. Oskarsson A., Squibb K.S., Fowler B.A. Intracellular binding of lead in the kidney: The partial isolation and characterization of postmitochondrial lead binding components. Biochem. Biophys. Res. Commun. 1982;104:290–298. doi: 10.1016/0006-291X(82)91973-8.
    1. DuVal G., Fowler B.A. Preliminary purification and characterization studies of a low molecular weight, high affinity cytosolic lead-binding protein in rat brain. Biochem. Biophys. Res. Commun. 1989;159:177–184. doi: 10.1016/0006-291X(89)92420-0.
    1. Fowler B.A., DuVal G. Effects of lead on the kidney: Roles of high-affinity lead-binding proteins. Environ. Health Perspect. 1991;91:77–80. doi: 10.1289/ehp.919177.
    1. Swenberg J.A., Short B., Borghoff S., Strasser J., Charbonneau M. The comparative pathobiology of alpha 2u-globulin nephropathy. Toxicol. Appl. Pharmacol. 1989;97:35–46. doi: 10.1016/0041-008X(89)90053-7.
    1. Goyer R.A. Mechanisms of lead and cadmium nephrotoxicity. Toxicol. Lett. 1989;46:153–162. doi: 10.1016/0378-4274(89)90124-0.
    1. Marchetti C. Role of calcium channels in heavy metal toxicity. ISRN Toxicol. 2013;2013:184360. doi: 10.1155/2013/184360.
    1. Goyer R.A. Toxic and essential metal interactions. Annu. Rev. Nutr. 1997;17:37–50. doi: 10.1146/annurev.nutr.17.1.37.
    1. Ziegler E.E., Edwards B.B., Jensen R.L., Mahaffey K.R., Fomon S.J. Absorption and retention of lead by infants. Pediatr. Res. 1978;12:29–34. doi: 10.1203/00006450-197801000-00008.
    1. Chen J., Li M., Lv Q., Chen G., Li Y., Li S., Mo Y., Ou S., Yuan Z., Huang M., et al. Blood lead level and its relationship to essential elements in preschool children from Nanning, China. J. Trace Elem. Med. Biol. 2015;30:137–141. doi: 10.1016/j.jtemb.2014.12.005.
    1. Six K.M., Goyer R.A. Experimental enhancement of lead toxicity by low dietary calcium. J. Lab. Clin. Med. 1970;76:933–942.
    1. Bogden J.D., Gertner S.B., Christakos S., Kemp F.W., Yang Z., Katz S.R., Chu C. Dietary calcium modifies concentrations of lead and other metals and renal calbindin in rats. J. Nutr. 1992;122:1351–1360.
    1. Mahaffey K.R., Gartside P.S., Glueck C.J. Blood lead levels and dietary calcium intake in 1- to 11-year-old children: The Second National Health and Nutrition Examination Survey, 1976 to 1980. Pediatrics. 1986;78:257–262.
    1. Blake K.C., Mann M. Effect of calcium and phosphorus on the gastrointestinal absorption of 203Pb in man. Environ. Res. 1983;30:188–194. doi: 10.1016/0013-9351(83)90179-2.
    1. Barton J.C. Active transport of lead-210 by everted segments of rat duodenum. Am. J. Physiol. 1984;247:G193–G198.
    1. Giebisch G., Windhager E. Transport of urea, glucose, phosphate, calcium, magnesium, and organic solutes. In: Boron W.F., Boulpaep E.L., editors. Medical Physiology. 2nd ed. Elsevier; Philadelphia, PA, USA: 2012. pp. 797–820.
    1. Kerper L.E., Hinkle P.M. Cellular uptake of lead is activated by depletion of intracellular calcium stores. J. Biol. Chem. 1997;272:8346–8352. doi: 10.1074/jbc.272.13.8346.
    1. Simons T.J. Lead transport and binding by human erythrocytes in vitro. Pflugers Arch. 1993;423:307–313. doi: 10.1007/BF00374410.
    1. Simons T.J. Lead-calcium interactions in cellular lead toxicity. Neurotoxicology. 1993;14:77–85.
    1. Simons T.J., Pocock G. Lead enters bovine adrenal medullary cells through calcium channels. J. Neurochem. 1987;48:383–389. doi: 10.1111/j.1471-4159.1987.tb04105.x.
    1. Peng S., Hajela R.K., Atchison W.D. Characteristics of block by Pb2+ of function of human neuronal L-, N-, and R-type Ca2+ channels transiently expressed in human embryonic kidney 293 cells. Mol. Pharmacol. 2002;62:1418–1430. doi: 10.1124/mol.62.6.1418.
    1. Chiu T.Y., Teng H.C., Huang P.C., Kao F.J., Yang D.M. Dominant role of Orai1 with STIM1 on the cytosolic entry and cytotoxicity of lead ions. Toxicol. Sci. 2009;110:353–362. doi: 10.1093/toxsci/kfp099.
    1. Pfleger H., Wolf H.U. Activation of membrane-bound high-affinity calcium ion-sensitive adenosine triphosphatase of human erythrocytes by bivalent metal ions. Biochem. J. 1975;147:359–361. doi: 10.1042/bj1470359.
    1. Alexander J., Aaseth J., Mikalsen A. Excretion of lead in rat bile—The role of glutathione. Acta Pharmacol. Toxicol. 1986;59(Suppl. S7):486–489. doi: 10.1111/j.1600-0773.1986.tb02809.x.
    1. Patrick L. Lead toxicity part II: The role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern. Med. Rev. 2006;11:114–127.
    1. Basgen J.M., Sobin C. Early chronic low-level lead exposure produces glomerular hypertrophy in young C57BL/6J mice. Toxicol. Lett. 2014;225:48–56. doi: 10.1016/j.toxlet.2013.11.031.
    1. Ritz E., Mann J., Stoeppler M. Lead and the kidney. Adv. Nephrol. Necker Hosp. 1988;17:241–274.
    1. Navarro-Moreno L.G., Quintanar-Escorza M.A., Gonzalez S., Mondragon R., Cerbon-Solorzano J., Valdes J., Calderon-Salinas J.V. Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells. Toxicol. In Vitro. 2009;23:1298–1304. doi: 10.1016/j.tiv.2009.07.020.
    1. Cardenas A., Roels H., Bernard A.M., Barbon R., Buchet J.P., Lauwerys R.R., Rosello J., Ramis I., Mutti A., Franchini I., et al. Markers of early renal changes induced by industrial pollutants. II. Application to workers exposed to lead. Br. J. Ind. Med. 1993;50:28–36. doi: 10.1136/oem.50.1.28.
    1. Soliman M.M., Baiomy A.A., Yassin M.H. Molecular and Histopathological Study on the Ameliorative Effects of Curcumin Against Lead Acetate-Induced Hepatotoxicity and Nephrototoxicity in Wistar Rats. Biol. Trace Elem. Res. 2015;167:91–102. doi: 10.1007/s12011-015-0280-0.
    1. Zhou R., Xu Y., Shen J., Han L., Chen X., Feng X., Kuang X. Urinary KIM-1: A novel biomarker for evaluation of occupational exposure to lead. Sci. Rep. 2016;6:38930. doi: 10.1038/srep38930.
    1. Garcon G., Leleu B., Marez T., Zerimech F., Haguenoer J.M., Furon D., Shirali P. Biomonitoring of the adverse effects induced by the chronic exposure to lead and cadmium on kidney function: Usefulness of alpha-glutathione S-transferase. Sci. Total Environ. 2007;377:165–172. doi: 10.1016/j.scitotenv.2007.02.002.
    1. Zhang Z., Gao X., Guo M., Jiang H., Cao Y., Zhang N. The Protective Effect of Baicalin Against Lead-Induced Renal Oxidative Damage in Mice. Biol. Trace Elem. Res. 2017;175:129–135. doi: 10.1007/s12011-016-0731-2.
    1. Wang L., Wang H., Hu M., Cao J., Chen D., Liu Z. Oxidative stress and apoptotic changes in primary cultures of rat proximal tubular cells exposed to lead. Arch. Toxicol. 2009;83:417–427. doi: 10.1007/s00204-009-0425-z.
    1. Dewanjee S., Sahu R., Karmakar S., Gangopadhyay M. Toxic effects of lead exposure in Wistar rats: Involvement of oxidative stress and the beneficial role of edible jute (Corchorus olitorius) leaves. Food Chem. Toxicol. 2013;55:78–91. doi: 10.1016/j.fct.2012.12.040.
    1. Liu G., Wang Z.K., Wang Z.Y., Yang D.B., Liu Z.P., Wang L. Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch. Toxicol. 2016;90:1193–1209. doi: 10.1007/s00204-015-1547-0.
    1. Bonora M., Morganti C., Morciano G., Giorgi C., Wieckowski M.R., Pinton P. Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques. Nat. Protoc. 2016;11:1067–1080. doi: 10.1038/nprot.2016.064.
    1. Wang L., Cao J., Chen D., Liu X., Lu H., Liu Z. Role of oxidative stress, apoptosis, and intracellular homeostasis in primary cultures of rat proximal tubular cells exposed to cadmium. Biol. Trace Elem. Res. 2009;127:53–68. doi: 10.1007/s12011-008-8223-7.
    1. Jacotot E., Deniaud A., Borgne-Sanchez A., Touat Z., Briand J.P., Le Bras M., Brenner C. Therapeutic peptides: Targeting the mitochondrion to modulate apoptosis. Biochim. Biophys. Acta. 2006;1757:1312–1323. doi: 10.1016/j.bbabio.2006.07.002.
    1. Goldstein G.W., Ar D. Lead activates calmodulin sensitive processes. Life Sci. 1983;33:1001–1006. doi: 10.1016/0024-3205(83)90757-9.
    1. Habermann E., Crowell K., Janicki P. Lead and other metals can substitute for Ca2+ in calmodulin. Arch. Toxicol. 1983;54:61–70. doi: 10.1007/BF00277816.
    1. Stoclet J.C., Gerard D., Kilhoffer M.C., Lugnier C., Miller R., Schaeffer P. Calmodulin and its role in intracellular calcium regulation. Prog. Neurobiol. 1987;29:321–364. doi: 10.1016/0301-0082(87)90018-9.
    1. Wang H., Wang Z.K., Jiao P., Zhou X.P., Yang D.B., Wang Z.Y., Wang L. Redistribution of subcellular calcium and its effect on apoptosis in primary cultures of rat proximal tubular cells exposed to lead. Toxicology. 2015;333:137–146. doi: 10.1016/j.tox.2015.04.015.
    1. Zhang J., Cao H., Zhang Y., Ma J., Wang J., Gao Y., Zhang X., Zhang F., Chu L. Nephroprotective effect of calcium channel blockers against toxicity of lead exposure in mice. Toxicol. Lett. 2013;218:273–280. doi: 10.1016/j.toxlet.2013.02.005.
    1. Staessen J., Yeoman W.B., Fletcher A.E., Markowe H.L., Marmot M.G., Rose G., Semmence A., Shipley M.J., Bulpitt C.J. Blood lead concentration, renal function, and blood pressure in London civil servants. Br. J. Ind. Med. 1990;47:442–447. doi: 10.1136/oem.47.7.442.
    1. Ekong E.B., Jaar B.G., Weaver V.M. Lead-related nephrotoxicity: A review of the epidemiologic evidence. Kidney Int. 2006;70:2074–2084. doi: 10.1038/sj.ki.5001809.
    1. Fadrowski J.J., Navas-Acien A., Tellez-Plaza M., Guallar E., Weaver V.M., Furth S.L. Blood lead level and kidney function in US adolescents: The Third National Health and Nutrition Examination Survey. Arch. Int. Med. 2010;170:75–82. doi: 10.1001/archinternmed.2009.417.
    1. Spector J.T., Navas-Acien A., Fadrowski J., Guallar E., Jaar B., Weaver V.M. Associations of blood lead with estimated glomerular filtration rate using MDRD, CKD-EPI and serum cystatin C-based equations. Nephrol. Dial. Transplant. 2011;26:2786–2792. doi: 10.1093/ndt/gfq773.
    1. Landrigan P.J. Current issues in the epidemiology and toxicology of occupational exposure to lead. Environ. Health Perspect. 1990;89:61–66. doi: 10.1289/ehp.908961.
    1. Hernandez-Serrato M.I., Fortoul T.I., Rojas-Martinez R., Mendoza-Alvarado L.R., Canales-Trevino L., Bochichio-Riccardelli T., Avila-Costa M.R., Olaiz-Fernandez G. Lead blood concentrations and renal function evaluation: Study in an exposed Mexican population. Environ. Res. 2006;100:227–231. doi: 10.1016/j.envres.2005.03.004.
    1. Chung S., Chung J.H., Kim S.J., Koh E.S., Yoon H.E., Park C.W., Chang Y.S., Shin S.J. Blood lead and cadmium levels and renal function in Korean adults. Clin. Exp. Nephrol. 2014;18:726–734. doi: 10.1007/s10157-013-0913-6.
    1. Sommar J.N., Svensson M.K., Bjor B.M., Elmstahl S.I., Hallmans G., Lundh T., Schon S.M., Skerfving S., Bergdahl I.A. End-stage renal disease and low level exposure to lead, cadmium and mercury; a population-based, prospective nested case-referent study in Sweden. Environ. Health. 2013;12:9. doi: 10.1186/1476-069X-12-9.
    1. Agency for Toxic Substances and Disease Registry (ATSDR) ATSDR’s Toxicological Profiles. U.S. Department of Health and Human Services, Public Health Service (PHS); Centers for Disease Control and Prevention; Atlanta, GA, USA: 2008. Toxicological Profile for Mercury.
    1. Clarkson T.W., Magos L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006;36:609–662. doi: 10.1080/10408440600845619.
    1. Rooney J.P. The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology. 2007;234:145–156. doi: 10.1016/j.tox.2007.02.016.
    1. Zalups R.K. Molecular interactions with mercury in the kidney. Pharmacol. Rev. 2000;52:113–143.
    1. Risher J.F., De Rosa C.T. Inorganic: The other mercury. J. Environ. Health. 2007;70:9–16.
    1. Gage J.C. Distribution and Excretion of Methyl and Phenyl Mercury Salts. Br. J. Ind. Med. 1964;21:197–202. doi: 10.1136/oem.21.3.197.
    1. Norseth T., Clarkson T.W. Studies on the biotransformation of 203Hg-labeled methyl mercury chloride in rats. Arch. Environ. Health. 1970;21:717–727. doi: 10.1080/00039896.1970.10667325.
    1. Norseth T., Clarkson T.W. Biotransformation of methylmercury salts in the rat studied by specific determination of inorganic mercury. Biochem. Pharmacol. 1970;19:2775–2783. doi: 10.1016/0006-2952(70)90104-8.
    1. Omata S., Sato M., Sakimura K., Sugano H. Time-dependent accumulation of inorganic mercury in subcellular fractions of kidney, liver, and brain of rats exposed to methylmercury. Arch. Toxicol. 1980;44:231–241. doi: 10.1007/BF00278031.
    1. Nielsen J.B. Toxicokinetics of mercuric chloride and methylmercuric chloride in mice. J. Toxicol. Environ. Health. 1992;37:85–122. doi: 10.1080/15287399209531659.
    1. Zalups R.K. Early aspects of the intrarenal distribution of mercury after the intravenous administration of mercuric chloride. Toxicology. 1993;79:215–228. doi: 10.1016/0300-483X(93)90213-C.
    1. Murphy M.J., Culliford E.J., Parsons V. A case of poisoning with mercuric chloride. Resuscitation. 1979;7:35–44. doi: 10.1016/0300-9572(79)90013-3.
    1. Rowens B., Guerrero-Betancourt D., Gottlieb C.A., Boyes R.J., Eichenhorn M.S. Respiratory failure and death following acute inhalation of mercury vapor. A clinical and histologic perspective. Chest. 1991;99:185–190. doi: 10.1378/chest.99.1.185.
    1. Samuels E.R., Heick H.M., McLaine P.N., Farant J.P. A case of accidental inorganic mercury poisoning. J. Anal. Toxicol. 1982;6:120–122. doi: 10.1093/jat/6.3.120.
    1. Yasutake A., Hirayama K., Inoue M. Mechanism of urinary excretion of methylmercury in mice. Arch. Toxicol. 1989;63:479–483. doi: 10.1007/BF00316452.
    1. Hughes W.L. A physicochemical rationale for the biological activity of mercury and its compounds. Ann. N. Y. Acad. Sci. 1957;65:454–460. doi: 10.1111/j.1749-6632.1956.tb36650.x.
    1. Fuhr B.J., Rabenstein D.L. Nuclear magnetic resonance studies of the solution chemistry of metal complexes. IX. The binding of cadmium, zinc, lead, and mercury by glutathione. J. Am. Chem. Soc. 1973;95:6944–6950. doi: 10.1021/ja00802a013.
    1. Rubino F.M., Verduci C., Giampiccolo R., Pulvirenti S., Brambilla G., Colombi A. Molecular characterization of homo- and heterodimeric mercury(II)-bis-thiolates of some biologically relevant thiols by electrospray ionization and triple quadrupole tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2004;15:288–300. doi: 10.1016/j.jasms.2003.10.013.
    1. Cannon V.T., Barfuss D.W., Zalups R.K. Molecular homology and the luminal transport of Hg2+ in the renal proximal tubule. J. Am. Soc. Nephrol. 2000;11:394–402.
    1. Cannon V.T., Zalups R.K., Barfuss D.W. Amino acid transporters involved in luminal transport of mercuric conjugates of cysteine in rabbit proximal tubule. J. Pharmacol. Exp. Ther. 2001;298:780–789.
    1. Zalups R.K. Basolateral uptake of inorganic mercury in the kidney. Toxicol. Appl. Pharmacol. 1998;151:192–199. doi: 10.1006/taap.1998.8416.
    1. Zalups R.K., Lash L.H. Binding of mercury in renal brush-border and basolateral membrane-vesicles. Biochem. Pharmacol. 1997;53:1889–1900. doi: 10.1016/S0006-2952(97)00138-X.
    1. Zalups R.K., Minor K.H. Luminal and basolateral mechanisms involved in the renal tubular uptake of inorganic mercury. J. Toxicol. Environ. Health. 1995;46:73–100. doi: 10.1080/15287399509532019.
    1. Zalups R.K., Barfuss D.W. Accumulation and handling of inorganic mercury in the kidney after coadministration with glutathione. J. Toxicol. Environ. Health. 1995;44:385–399. doi: 10.1080/15287399509531968.
    1. Zalups R.K., Barfuss D.W. Nephrotoxicity of inorganic mercury co-administrated with l-cysteine. Toxicology. 1996;109:15–29. doi: 10.1016/0300-483X(95)03297-S.
    1. Zalups R.K., Barfuss D.W. Participation of mercuric conjugates of cysteine, homocysteine, and N-acetylcysteine in mechanisms involved in the renal tubular uptake of inorganic mercury. J. Am. Soc. Nephrol. 1998;9:551–561.
    1. Bridges C.C., Bauch C., Verrey F., Zalups R.K. Mercuric conjugates of cysteine are transported by the amino acid transporter system b(0,+): Implications of molecular mimicry. J. Am. Soc. Nephrol. 2004;15:663–673. doi: 10.1097/01.ASN.0000113553.62380.F5.
    1. Bridges C.C., Zalups R.K. Homocysteine, system b0,+ and the renal epithelial transport and toxicity of inorganic mercury. Am. J. Pathol. 2004;165:1385–1394. doi: 10.1016/S0002-9440(10)63396-2.
    1. Bridges C.C., Zalups R.K. System B0,+ and the transport of thiol-S-conjugates of methylmercury. J. Pharmacol. Exp. Ther. 2006;319:948–956. doi: 10.1124/jpet.106.109371.
    1. Zalups R.K., Barfuss D.W. Pretreatment with p-aminohippurate inhibits the renal uptake and accumulation of injected inorganic mercury in the rat. Toxicology. 1995;103:23–35. doi: 10.1016/0300-483X(95)03099-2.
    1. Zalups R.K., Barfuss D.W. Small aliphatic dicarboxylic acids inhibit renal uptake of administered mercury. Toxicol. Appl. Pharmacol. 1998;148:183–193. doi: 10.1006/taap.1997.8320.
    1. Zalups R.K. Organic anion transport and action of gamma-glutamyl transpeptidase in kidney linked mechanistically to renal tubular uptake of inorganic mercury. Toxicol. Appl. Pharmacol. 1995;132:289–298. doi: 10.1006/taap.1995.1110.
    1. Zalups R.K. Basolateral uptake of mercuric conjugates of N-acetylcysteine and cysteine in the kidney involves the organic anion transport system. J. Toxicol. Environ. Health A. 1998;55:13–29. doi: 10.1080/009841098158593.
    1. Ferrier B., Martin M., Roch-Ramel F. Effects of p-aminohippurate and pyrazinoate on the renal excretion of salicylate in the rat: A micropuncture study. J. Pharmacol. Exp. Ther. 1983;224:451–458.
    1. Koh A.S., Simmons-Willis T.A., Pritchard J.B., Grassl S.M., Ballatori N. Identification of a mechanism by which the methylmercury antidotes N-acetylcysteine and dimercaptopropanesulfonate enhance urinary metal excretion: Transport by the renal organic anion transporter-1. Mol. Pharmacol. 2002;62:921–926. doi: 10.1124/mol.62.4.921.
    1. Kojima R., Sekine T., Kawachi M., Cha S.H., Suzuki Y., Endou H. Immunolocalization of multispecific organic anion transporters, OAT1, OAT2, and OAT3, in rat kidney. J. Am. Soc. Nephrol. 2002;13:848–857.
    1. Motohashi H., Sakurai Y., Saito H., Masuda S., Urakami Y., Goto M., Fukatsu A., Ogawa O., Inui K. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J. Am. Soc. Nephrol. 2002;13:866–874.
    1. Pritchard J.B. Coupled transport of p-aminohippurate by rat kidney basolateral membrane vesicles. Am. J. Physiol. 1988;255:F597–F604.
    1. Shimomura A., Chonko A.M., Grantham J.J. Basis for heterogeneity of para-aminohippurate secretion in rabbit proximal tubules. Am. J. Physiol. 1981;240:F430–F436.
    1. Tanaka T., Naganuma A., Miura N., Imura N. Role of testosterone in gamma-glutamyltranspeptidase-dependent renal methylmercury uptake in mice. Toxicol. Appl. Pharmacol. 1992;112:58–63. doi: 10.1016/0041-008X(92)90279-2.
    1. Ullrich K.J., Rumrich G., Fritzsch G., Kloss S. Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney. II. Specificity: Aliphatic dicarboxylic acids. Pflugers Arch. 1987;408:38–45. doi: 10.1007/BF00581838.
    1. Zalups R.K., Ahmad S. Handling of cysteine S-conjugates of methylmercury in MDCK cells expressing human OAT1. Kidney Int. 2005;68:1684–1699. doi: 10.1111/j.1523-1755.2005.00585.x.
    1. Zalups R.K., Ahmad S. Handling of the homocysteine S-conjugate of methylmercury by renal epithelial cells: Role of organic anion transporter 1 and amino acid transporters. J. Pharmacol. Exp. Ther. 2005;315:896–904. doi: 10.1124/jpet.105.090530.
    1. Zalups R.K., Ahmad S. Transport of N-acetylcysteine S-conjugates of methylmercury in Madin-Darby canine kidney cells stably transfected with human isoform of organic anion transporter 1. J. Pharmacol. Exp. Ther. 2005;314:1158–1168. doi: 10.1124/jpet.105.086645.
    1. Aslamkhan A.G., Han Y.H., Yang X.P., Zalups R.K., Pritchard J.B. Human renal organic anion transporter 1-dependent uptake and toxicity of mercuric-thiol conjugates in Madin-Darby canine kidney cells. Mol. Pharmacol. 2003;63:590–596. doi: 10.1124/mol.63.3.590.
    1. Zalups R.K., Ahmad S. Homocysteine and the renal epithelial transport and toxicity of inorganic mercury: Role of basolateral transporter organic anion transporter 1. J. Am. Soc. Nephrol. 2004;15:2023–2031. doi: 10.1097/01.ASN.0000135115.63412.A9.
    1. Zalups R.K., Aslamkhan A.G., Ahmad S. Human organic anion transporter 1 mediates cellular uptake of cysteine-S conjugates of inorganic mercury. Kidney Int. 2004;66:251–261. doi: 10.1111/j.1523-1755.2004.00726.x.
    1. Cherian M.G., Clarkson T.W. Biochemical changes in rat kidney on exposure to elemental mercury vapor: Effect on biosynthesis of metallothionein. Chem. Biol. Interact. 1976;12:109–120. doi: 10.1016/0009-2797(76)90093-4.
    1. Zalups R.K., Koropatnick J. Temporal changes in metallothionein gene transcription in rat kidney and liver: Relationship to content of mercury and metallothionein protein. J. Pharmacol. Exp. Ther. 2000;295:74–82.
    1. Ruprecht J. Scientific Monograph for Dimaval. Heyltex Corporation; Houston, TX, USA: 2008.
    1. Aposhian H.V. DMSA and DMPS—Water soluble antidotes for heavy metal poisoning. Annu. Rev. Pharmacol. Toxicol. 1983;23:193–215. doi: 10.1146/annurev.pa.23.040183.001205.
    1. Aposhian H.V., Maiorino R.M., Gonzalez-Ramirez D., Zuniga-Charles M., Xu Z., Hurlbut K.M., Junco-Munoz P., Dart R.C., Aposhian M.M. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology. 1995;97:23–38. doi: 10.1016/0300-483X(95)02965-B.
    1. Aposhian H.V., Maiorino R.M., Rivera M., Bruce D.C., Dart R.C., Hurlbut K.M., Levine D.J., Zheng W., Fernando Q., Carter D., et al. Human studies with the chelating agents, DMPS and DMSA. J. Toxicol. Clin. Toxicol. 1992;30:505–528. doi: 10.3109/15563659209017938.
    1. Planas-Bohne F. The effect of 2,3-dimercaptorpropane-1-sulfonate and dimercaptosuccinic acid on the distribution and excretion of mercuric chloride in rats. Toxicology. 1981;19:275–278. doi: 10.1016/0300-483X(81)90138-4.
    1. Zalups R.K. Influence of 2,3-dimercaptopropane-1-sulfonate (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA) on the renal disposition of mercury in normal and uninephrectomized rats exposed to inorganic mercury. J. Pharmacol. Exp. Ther. 1993;267:791–800.
    1. Zalups R.K., Bridges C.C. Relationships between the renal handling of DMPS and DMSA and the renal handling of mercury. Chem. Res. Toxicol. 2012;25:1825–1838. doi: 10.1021/tx3001847.
    1. Rodiger M., Zhang X., Ugele B., Gersdorff N., Wright S.H., Burckhardt G., Bahn A. Organic anion transporter 3 (OAT3) and renal transport of the metal chelator 2,3-dimercapto-1-propanesulfonic acid (DMPS) Can. J. Physiol. Pharmacol. 2010;88:141–146. doi: 10.1139/Y09-123.
    1. Bahn A., Knabe M., Hagos Y., Rodiger M., Godehardt S., Graber-Neufeld D.S., Evans K.K., Burckhardt G., Wright S.H. Interaction of the metal chelator 2,3-dimercapto-1-propanesulfonate with the rabbit multispecific organic anion transporter 1 (rbOAT1) Mol. Pharmacol. 2002;62:1128–1136. doi: 10.1124/mol.62.5.1128.
    1. Burckhardt B.C., Drinkuth B., Menzel C., Konig A., Steffgen J., Wright S.H., Burckhardt G. The renal Na(+)-dependent dicarboxylate transporter, NaDC-3, translocates dimethyl- and disulfhydryl-compounds and contributes to renal heavy metal detoxification. J. Am. Soc. Nephrol. 2002;13:2628–2638. doi: 10.1097/01.ASN.0000033463.58641.F9.
    1. Islinger F., Gekle M., Wright S.H. Interaction of 2,3-dimercapto-1-propane sulfonate with the human organic anion transporter hOAT1. J. Pharmacol. Exp. Ther. 2001;299:741–747.
    1. Bridges C.C., Joshee L., Zalups R.K. MRP2 and the DMPS- and DMSA-mediated elimination of mercury in TR(-) and control rats exposed to thiol S-conjugates of inorganic mercury. Toxicol. Sci. 2008;105:211–220. doi: 10.1093/toxsci/kfn107.
    1. Bridges C.C., Joshee L., Zalups R.K. Multidrug resistance proteins and the renal elimination of inorganic mercury mediated by 2,3-dimercaptopropane-1-sulfonic acid and meso-2,3-dimercaptosuccinic acid. J. Pharmacol. Exp. Ther. 2008;324:383–390. doi: 10.1124/jpet.107.130708.
    1. Bridges C.C., Joshee L., Zalups R.K. Effect of DMPS and DMSA on the Placental and Fetal Disposition of Methylmercury. Placenta. 2009;30:800–805. doi: 10.1016/j.placenta.2009.06.005.
    1. Bridges C.C., Zalups R.K., Joshee L. Toxicological significance of renal Bcrp: Another potential transporter in the elimination of mercuric ions from proximal tubular cells. Toxicol. Appl. Pharmacol. 2015;285:110–117. doi: 10.1016/j.taap.2015.03.027.
    1. Aremu D.A., Madejczyk M.S., Ballatori N. N-acetylcysteine as a potential antidote and biomonitoring agent of methylmercury exposure. Environ. Health Perspect. 2008;116:26–31. doi: 10.1289/ehp.10383.
    1. Madejczyk M.S., Aremu D.A., Simmons-Willis T.A., Clarkson T.W., Ballatori N. Accelerated urinary excretion of methylmercury following administration of its antidote N-acetylcysteine requires Mrp2/Abcc2, the apical multidrug resistance-associated protein. J. Pharmacol. Exp. Ther. 2007;322:378–384. doi: 10.1124/jpet.107.122812.
    1. McDowell E.M., Nagle R.B., Zalme R.C., McNeil J.S., Flamenbaum W., Trump B.F. Studies on the pathophysiology of acute renal failure. I. Correlation of ultrastructure and function in the proximal tubule of the rat following administration of mercuric chloride. Virchows Arch. B Cell Pathol. 1976;22:173–196.
    1. Zalme R.C., McDowell E.M., Nagle R.B., McNeil J.S., Flamenbaum W., Trump B.F. Studies on the pathophysiology of acute renal failure. II. A histochemical study of the proximal tubule of the rat following administration of mercuric chloride. Virchows Arch. B Cell Pathol. 1976;22:197–216.
    1. Rodin A.E., Crowson C.N. Mercury nephrotoxicity in the rat. 2. Investigation of the intracellular site of mercury nephrotoxicity by correlated serial time histologic and histoenzymatic studies. Am. J. Pathol. 1962;41:485–499.
    1. Gritzka T.L., Trump B.F. Renal tubular lesions caused by mercuric chloride. Electron microscopic observations: Degeneration of the pars recta. Am. J. Pathol. 1968;52:1225–1277.
    1. Zalups R.K. Evidence for basolateral uptake of cadmium in the kidneys of rats. Toxicol. Appl. Pharmacol. 2000;164:15–23. doi: 10.1006/taap.1999.8854.
    1. Gotelli C.A., Astolfi E., Cox C., Cernichiari E., Clarkson T.W. Early biochemical effects of an organic mercury fungicide on infants: “dose makes the poison”. Science. 1985;227:638–640. doi: 10.1126/science.2857500.

Source: PubMed

3
구독하다