Vestibular Infant Screening (VIS)-Flanders: results after 1.5 years of vestibular screening in hearing-impaired children

Sarie Martens, Ingeborg Dhooge, Cleo Dhondt, Saartje Vanaudenaerde, Marieke Sucaet, Lotte Rombaut, An Boudewyns, Christian Desloovere, Sebastien Janssens de Varebeke, Anne-Sophie Vinck, Robby Vanspauwen, Dominique Verschueren, Ina Foulon, Charlotte Staelens, Karen Van den Broeck, Claudia De Valck, Naima Deggouj, Nele Lemkens, Lisa Haverbeke, Mieke De Bock, Okan Öz, Frank Declau, Benoit Devroede, Christoph Verhoye, Leen Maes, Sarie Martens, Ingeborg Dhooge, Cleo Dhondt, Saartje Vanaudenaerde, Marieke Sucaet, Lotte Rombaut, An Boudewyns, Christian Desloovere, Sebastien Janssens de Varebeke, Anne-Sophie Vinck, Robby Vanspauwen, Dominique Verschueren, Ina Foulon, Charlotte Staelens, Karen Van den Broeck, Claudia De Valck, Naima Deggouj, Nele Lemkens, Lisa Haverbeke, Mieke De Bock, Okan Öz, Frank Declau, Benoit Devroede, Christoph Verhoye, Leen Maes

Abstract

Due to the close anatomical relationship between the auditory and vestibular end organs, hearing-impaired children have a higher risk for vestibular dysfunction, which can affect their (motor) development. Unfortunately, vestibular dysfunction often goes unnoticed, as vestibular assessment in these children is not standard of care nowadays. To timely detect vestibular dysfunction, the Vestibular Infant Screening-Flanders (VIS-Flanders) project has implemented a basic vestibular screening test for hearing-impaired infants in Flanders (Belgium) with a participation rate of 86.7% during the first year and a half. The cervical Vestibular Evoked Myogenic Potentials (cVEMP) test was applied as vestibular screening tool to map the occurrence of vestibular (mainly saccular) dysfunction in this population. At the age of 6 months, 184 infants were screened. No refers on vestibular screening were observed in infants with permanent conductive hearing loss. In infants with permanent sensorineural hearing loss, a cVEMP refer rate of 9.5% was observed. Failure was significantly more common in infants with severe-profound compared to those with mild-moderate sensorineural hearing loss (risk ratio = 9.8). Since this is the first regional study with a large sample size and successful participation rate, the VIS-Flanders project aims to set an example for other regions worldwide.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
The existing neonatal hearing screening protocol in Flanders (Belgium) in addition with the vestibular screening protocol. Additional information about the brochures for parents: Brochure 1 = ‘Vestibular screening VIS–Flanders’; Brochure 2 = ‘What after the vestibular screening?’; Brochure 3 = ‘Tips and tricks for vestibular dysfunction’. (A)ABR (automated) auditory brainstem responses, OAE otoacoustic emissions, TYMP tympanometry, cVEMP cervical Vestibular Evoked Myogenic Potentials, VIS–Flanders Vestibular Infant Screening–Flanders.
Figure 2
Figure 2
Vestibular screening results according to the degree and laterality of sensorineural hearing loss. cVEMP cervical Vestibular Evoked Myogenic Potentials, VIS–Flanders Vestibular Infant Screening–Flanders.

References

    1. Rine RM, Wiener-Vacher S. Evaluation and treatment of vestibular dysfunction in children. NeuroRehabilitation. 2013;32:507–518. doi: 10.3233/NRE-130873.
    1. De Kegel A, Maes L, Baetens T, Dhooge I, Van Waelvelde H. The influence of a vestibular dysfunction on the motor development of hearing-impaired children. Laryngoscope. 2012;122:2837–2843. doi: 10.1002/lary.23529.
    1. Maes L, De Kegel A, Van Waelvelde H, Dhooge I. Association between vestibular function and motor performance in hearing-impaired children. Otol. Neurotol. 2014;35:e343–347. doi: 10.1097/MAO.0000000000000597.
    1. Kaga K, Shinjo Y, Jin Y, Takegoshi H. Vestibular failure in children with congenital deafness. Int. J. Audiol. 2008;47:590–599. doi: 10.1080/14992020802331222.
    1. Inoue A, et al. Effect of vestibular dysfunction on the development of gross motor function in children with profound hearing loss. Audiol. Neurootol. 2013;18:143–151. doi: 10.1159/000346344.
    1. Shall MS. The importance of saccular function to motor development in children with hearing impairments. Int. J. Otolaryngol. 2009;2009:972565. doi: 10.1155/2009/972565.
    1. Kimura Y, Masuda T, Kaga K. Vestibular function and gross motor development in 195 children with congenital hearing loss-assessment of inner ear malformations. Otol. Neurotol. 2018;39:196–205. doi: 10.1097/MAO.0000000000001685.
    1. Cushing SL, Papsin BC, Rutka JA, James AL, Gordon KA. Evidence of vestibular and balance dysfunction in children with profound sensorineural hearing loss using cochlear implants. Laryngoscope. 2008;118:1814–1823. doi: 10.1097/MLG.0b013e31817fadfa.
    1. Rine RM, et al. Evidence of progressive delay of motor development in children with sensorineural hearing loss and concurrent vestibular dysfunction. Percept. Mot. Skills. 2000;90:1101–1112. doi: 10.2466/pms.2000.90.3c.1101.
    1. Ionescu E, et al. How sacculo-collic function assessed by cervical vestibular evoked myogenic Potentials correlates with the quality of postural control in hearing impaired children? Int. J. Pediatr. Otorhinolaryngol. 2019;130:109840. doi: 10.1016/j.ijporl.2019.109840.
    1. Popp P, et al. Cognitive deficits in patients with a chronic vestibular failure. J. Neurol. 2017;264:554–563. doi: 10.1007/s00415-016-8386-7.
    1. Wiener-Vacher SR, Hamilton DA, Wiener SI. Vestibular activity and cognitive development in children: perspectives. Front. Integr. Neurosci. 2013;7:92. doi: 10.3389/fnint.2013.00092.
    1. Bigelow RT, Agrawal Y. Vestibular involvement in cognition: visuospatial ability, attention, executive function, and memory. J. Vestib. Res. 2015;25:73–89. doi: 10.3233/VES-150544.
    1. Braswell J, Rine RM. Evidence that vestibular hypofunction affects reading acuity in children. Int. J. Pediatr. Otorhinolaryngol. 2006;70:1957–1965. doi: 10.1016/j.ijporl.2006.07.013.
    1. Franco ES, Panhoca I. Vestibular function in children underperforming at school. Braz. J. Otorhinolaryngol. 2008;74:815–825. doi: 10.1016/S1808-8694(15)30141-5.
    1. Bigelow RT, Semenov YR, Hoffman HJ, Agrawal Y. Association between vertigo, cognitive and psychiatric conditions in US children: 2012 National Health Interview Survey. Int. J. Pediatr. Otorhinolaryngol. 2019;130:109802. doi: 10.1016/j.ijporl.2019.109802.
    1. Lacroix E, et al. Neuropsychological profiles of children with vestibular loss. J. Vestib. Res. 2020;30:25–33. doi: 10.3233/ves-200689.
    1. Rine RM. Vestibular rehabilitation for children. Semin. Hear. 2018;39:334–344. doi: 10.1055/s-0038-1666822.
    1. Rine RM, et al. Improvement of motor development and postural control following intervention in children with sensorineural hearing loss and vestibular impairment. Int. J. Pediatr. Otorhinolaryngol. 2004;68:1141–1148. doi: 10.1016/j.ijporl.2004.04.007.
    1. Angeli S. Value of vestibular testing in young children with sensorineural hearing loss. Arch. Otolaryngol. Head Neck Surg. 2003;129:478–482. doi: 10.1001/archotol.129.4.478.
    1. Verbecque E, et al. Vestibular (dys)function in children with sensorineural hearing loss: a systematic review. Int. J. Audiol. 2017;56:361–381. doi: 10.1080/14992027.2017.1281444.
    1. Valente LM, Goebel JA, Sinks B. Pediatric vestibular evaluation: two children with sensorineural hearing loss. J. Am. Acad. Audiol. 2012;23:283–290. doi: 10.3766/jaaa.23.4.7.
    1. Dhondt C, Dhooge I, Maes L. Vestibular assessment in the pediatric population. Laryngoscope. 2019;129:490–493. doi: 10.1002/lary.27255.
    1. Wiener-Vacher SR, Wiener SI. Video head impulse tests with a remote camera system: normative values of semicircular canal vestibulo-ocular reflex gain in infants and children. Front. Neurol. 2017;8:434. doi: 10.3389/fneur.2017.00434.
    1. Cyr DG. Vestibular testing in children. Ann. Otol. Rhinol. Laryngol. Suppl. 1980;89:63–69. doi: 10.1177/00034894800890s519.
    1. Miyahara M, Hirayama M, Yuta A, Takeuchi K, Inoki T. Too young to talk of vertigo? Lancet. 2009;373:516. doi: 10.1016/S0140-6736(09)60173-2.
    1. Cushing SL, Gordon KA, Rutka JA, James AL, Papsin BC. Vestibular end-organ dysfunction in children with sensorineural hearing loss and cochlear implants: an expanded cohort and etiologic assessment. Otol. Neurotol. 2013;34:422–428. doi: 10.1097/MAO.0b013e31827b4ba0.
    1. Jacot E, Van Den Abbeele T, Debre HR, Wiener-Vacher SR. Vestibular impairments pre- and post-cochlear implant in children. Int. J. Pediatr. Otorhinolaryngol. 2009;73:209–217. doi: 10.1016/j.ijporl.2008.10.024.
    1. De Kegel A, Maes L, Van Waelvelde H, Dhooge I. Examining the impact of cochlear implantation on the early gross motor development of children with a hearing loss. Ear Hear. 2015;36:e113–121. doi: 10.1097/AUD.0000000000000133.
    1. Licameli G, Zhou G, Kenna MA. Disturbance of vestibular function attributable to cochlear implantation in children. Laryngoscope. 2009;119:740–745. doi: 10.1002/lary.20121.
    1. Coudert A, et al. Vestibular assessment in cochlear implanted children: how to do? When to do? A review of literature. Curr. Otorhinolaryngol. Rep. 2017;5:259–267. doi: 10.1007/s40136-017-0172-2.
    1. Janky KL, Rodriguez AI. Quantitative vestibular function testing in the pediatric population. Semin. Hear. 2018;39:257–274. doi: 10.1055/s-0038-1666817.
    1. Martens S, et al. Vestibular Infant Screening - Flanders: The implementation of a standard vestibular screening protocol for hearing-impaired children in Flanders. Int. J. Pediatr. Otorhinolaryngol. 2019;120:196–201. doi: 10.1016/j.ijporl.2019.02.033.
    1. Zhou G, Dargie J, Dornan B, Whittemore K. Clinical uses of cervical vestibular-evoked myogenic potential testing in pediatric patients. Medicine. 2014;93:e37. doi: 10.1097/md.0000000000000037.
    1. Singh S, Gupta RK, Kumar P. Vestibular evoked myogenic potentials in children with sensorineural hearing loss. Int. J. Pediatr. Otorhinolaryngol. 2012;76:1308–1311. doi: 10.1016/j.ijporl.2012.05.025.
    1. Maes L, De Kegel A, Van Waelvelde H, Dhooge I. Rotatory and collic vestibular evoked myogenic potential testing in normal-hearing and hearing-impaired children. Ear Hear. 2014;35:e21–32. doi: 10.1097/AUD.0b013e3182a6ca91.
    1. Tribukait A, Brantberg K, Bergenius J. Function of semicircular canals, utricles and saccules in deaf children. Acta Otolaryngol. 2004;124:41–48. doi: 10.1080/00016480310002113.
    1. Zagolski O. Vestibular system in infants with hereditary nonsyndromic deafness. Otol. Neurotol. 2007;28:1053–1055. doi: 10.1097/MAO.0b013e31815145e9.
    1. Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics120, 898-921. doi:10.1542/peds.2007-2333 (2007).
    1. Welgampola MS, Colebatch JG. Characteristics and clinical applications of vestibular-evoked myogenic potentials. Neurology. 2005;64:1682–1688. doi: 10.1212/01.WNL.0000161876.20552.AA.
    1. Thierry B, et al. Cochlear implantation and vestibular function in children. Int. J. Pediatr. Otorhinolaryngol. 2015;79:101–104. doi: 10.1016/j.ijporl.2014.11.002.
    1. Yong M, et al. Subjective and objective vestibular changes that occur following paediatric cochlear implantation: systematic review and meta-analysis. J. Otolaryngol. Head Neck Surg. 2019;48:22. doi: 10.1186/s40463-019-0341-z.
    1. Li X, Gong S. The effect of cochlear implantation on vestibular evoked myogenic potential in children. Laryngoscope. 2020 doi: 10.1002/lary.28520.
    1. Cushing SL, Papsin BC. Cochlear implants and children with vestibular impairments. Semin. Hear. 2018;39:305–320. doi: 10.1055/s-0038-1666820.
    1. Stappaerts L, Hoppenbrouwers K. Neonatale gehoorscreening in Vlaanderen, een overzicht van 20 jaar ervaring. JGZ Tijdschrift voor jeugdgezondheidszorg. 2018;50:106–111. doi: 10.1007/s12452-018-0152-z.
    1. Declau F, Boudewyns A, Van den Ende J, Peeters A, van den Heyning P. Etiologic and audiologic evaluations after universal neonatal hearing screening: analysis of 170 referred neonates. Pediatrics. 2008;121:1119–1126. doi: 10.1542/peds.2007-1479.
    1. Verrecchia L, et al. Methodological aspects of testing vestibular evoked myogenic potentials in infants at universal hearing screening program. Sci. Rep. 2019;9:17225. doi: 10.1038/s41598-019-53143-z.
    1. Papathanasiou ES, Murofushi T, Akin FW, Colebatch JG. International guidelines for the clinical application of cervical vestibular evoked myogenic potentials: an expert consensus report. Clin. Neurophysiol. 2014;125:658–666. doi: 10.1016/j.clinph.2013.11.042.
    1. Sheykholeslami K, Megerian CA, Arnold JE, Kaga K. Vestibular-evoked myogenic potentials in infancy and early childhood. Laryngoscope. 2005;115:1440–1444. doi: 10.1097/01.mlg.0000167976.58724.22.
    1. Sheykholeslami K, Habiby Kermany M, Kaga K. Bone-conducted vestibular evoked myogenic potentials in patients with congenital atresia of the external auditory canal. Int. J. Pediatr. Otorhinolaryngol. 2001;57:25–29. doi: 10.1016/s0165-5876(00)00430-4.
    1. Curthoys IS. A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Clin. Neurophysiol. 2010;121:132–144. doi: 10.1016/j.clinph.2009.09.027.
    1. Curthoys IS, et al. The basis for using bone-conducted vibration or air-conducted sound to test otolithic function. Ann. N Y Acad. Sci. 2011;1233:231–241. doi: 10.1111/j.1749-6632.2011.06147.x.
    1. Curthoys IS, Vulovic V, Sokolic L, Pogson J, Burgess AM. Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound. Brain. Res. Bull. 2012;89:16–21. doi: 10.1016/j.brainresbull.2012.07.007.
    1. Curthoys IS, Vulovic V, Burgess AM, Sokolic L, Goonetilleke SC. The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS) Hear. Res. 2016;331:131–143. doi: 10.1016/j.heares.2015.10.019.
    1. Curthoys IS, Dlugaiczyk J. Physiology, clinical evidence and diagnostic relevance of sound-induced and vibration-induced vestibular stimulation. Curr. Opin. Neurol. 2020;33:126–135. doi: 10.1097/wco.0000000000000770.
    1. Curthoys IS, et al. A review of mechanical and synaptic processes in otolith transduction of sound and vibration for clinical VEMP testing. J. Neurophysiol. 2019;122:259–276. doi: 10.1152/jn.00031.2019.
    1. Janky KL, Thomas MLA, High RR, Schmid KK, Ogun OA. Predictive factors for vestibular loss in children with hearing loss. Am. J. Audiol. 2018;27:137–146. doi: 10.1044/2017_aja-17-0058.
    1. Sokolov M, et al. Vestibular and balance function is often impaired in children with profound unilateral sensorineural hearing loss. Hear. Res. 2019;372:52–61. doi: 10.1016/j.heares.2018.03.032.
    1. Birdane L, et al. Evaluation of the vestibular system and etiology in children with unilateral sensorineural hearing loss. J. Int. Adv. Otol. 2016;12:161–165. doi: 10.5152/iao.2016.2439.

Source: PubMed

3
구독하다