Pulmonary Edema in COVID-19 Treated with Furosemide and Negative Fluid Balance (NEGBAL): A Different and Promising Approach

Jose L Francisco Santos, Patricio Zanardi, Veronica Alo, Marcelo Rodriguez, Federico Magdaleno, Virginia De Langhe, Vanina Dos Santos, Giuliana Murialdo, Andrea Villoldo, Micaela Coria, Diego Quiros, Claudio Milicchio, Eduardo Garcia Saiz, Jose L Francisco Santos, Patricio Zanardi, Veronica Alo, Marcelo Rodriguez, Federico Magdaleno, Virginia De Langhe, Vanina Dos Santos, Giuliana Murialdo, Andrea Villoldo, Micaela Coria, Diego Quiros, Claudio Milicchio, Eduardo Garcia Saiz

Abstract

In COVID-19, pulmonary edema has been attributed to "cytokine storm". However, it is known that SARS-CoV2 promotes angiotensin-converting enzyme 2 deficit, increases angiotensin II, and this triggers volume overload. Our report is based on COVID-19 patients with tomographic evidence of pulmonary edema and volume overload to whom established a standard treatment with diuretic (furosemide) guided by objectives: Negative Fluid Balance (NEGBAL approach). Retrospective observational study. We reviewed data from medical records: demographic, clinical, laboratory, blood gas, and chest tomography (CT) before and while undergoing NEGBAL, from 20 critically ill patients. Once the NEGBAL strategy was started, no patient required mechanical ventilation. All cases reverted to respiratory failure with NEGBAL, but subsequently two patients died from sepsis and acute myocardial infarction (AMI). The regressive analysis between PaO2/FiO2BAL and NEGBAL demonstrated correlation (p < 0.032). The results comparing the Pao2Fio2 between admission to NEGBAL to NEGBAL day 4, were statistically significant (p < 0.001). We noted between admission to NEGBAL and day 4 improvement in CT score (p < 0.001), decrease in the superior vena cava diameter (p < 0.001) and the decrease of cardiac axis (p < 0.001). Though our study has several limitations, we believe the promising results encourage further investigation of this different pathophysiological approach.

Keywords: COVID-19; NEGBAL; diuretic; edema; furosemide; volume overload.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
PAFI evolution during NEGBAL approach. (A) Scatter plot and regression line for PAFIBAL onto NEGBAL. (B) Boxplot for the PaO2/FiO2 ratio on the day of admission, day 4, day 8, and on day of discharge.
Figure 2
Figure 2
CT score evolution pre- and post-NEGBAL of CT, HTO, Ø SVC, and Ø CARD. (A) Box plot for CT score previous to NEGBAL, CT score adm. NEGBAL, CT day 4, and CT day 8. (B) Box plot for previous HTO, HTO adm. NEGBAL, and HTO day 4. (C) Box plot for Ø SVC previous NEGBAL, Ø SVC adm. NEGBAL, and Ø SVC day 4. (D) Box plot for Ø CARD previous NEGBAL, Ø CARD adm. NEGBAL, and Ø CARD day 4.

References

    1. World Health Organization Pneumonia of Unknown Cause—China. 2020. [(accessed on 20 August 2021)]. Available online: .
    1. World Health Organization Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Out-Break of Novel Coronavirus (2019-nCoV) 2020. [(accessed on 20 August 2021)]. Available online:
    1. World Health Organization Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. 2020. [(accessed on 20 August 2021)]. Available online:
    1. Cui X., Chen W., Zhou H., Gong Y., Zhu B., Lv X., Guo H., Duan J., Zhou J., Marcon E., et al. Pulmonary Edema in COVID-19 Patients: Mechanisms and Treatment Potential. Front. Pharmacol. 2021;12:664349. doi: 10.3389/fphar.2021.664349.
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8:420–422. doi: 10.1016/S2213-2600(20)30076-X.
    1. Rasch S., Schmidle P., Sancak S., Herner A., Huberle C., Schulz D., Mayr U., Schneider J., Spinner C.D., Geisler F., et al. Increased extravascular lung water index (EVLWI) reflects rapid non-cardiogenic oedema and mortality in COVID-19 associated ARDS. Sci. Rep. 2021;11:11524. doi: 10.1038/s41598-021-91043-3.
    1. Kuebler W.M., Jordt S.-E., Liedtke W.B. Urgent reconsideration of lung edema as a preventable outcome in COVID-19: Inhibition of TRPV4 represents a promising and feasible approach. Am. J. Physiol. Cell. Mol. Physiol. 2020;318:L1239–L1243. doi: 10.1152/ajplung.00161.2020.
    1. Sun X., Wang T., Cai D., Hu Z., Chen J., Liao H., Zhi L., Wei H., Zhang Z., Qiu Y., et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020;53:38–42. doi: 10.1016/j.cytogfr.2020.04.002.
    1. Mangalmurti N., Hunter C.A. Cytokine Storms: Understanding COVID-19. Immunity. 2020;53:19–25. doi: 10.1016/j.immuni.2020.06.017.
    1. Langer-Gould A., Smith J.B., Gonzales E.G., Castillo R.D., Figueroa J.G., Ramanathan A., Li B.H., Gould M.K. Early identification of COVID-19 cytokine storm and treatment with anakinra or tocilizumab. Int. J. Infect. Dis. 2020;99:291–297. doi: 10.1016/j.ijid.2020.07.081.
    1. Hu B., Huang S., Yin L. The cytokine storm and COVID-19. J. Med. Virol. 2021;93:250–256. doi: 10.1002/jmv.26232.
    1. Fara A., Mitrev Z., Rosalia R.A., Assas B.M. Cytokine storm and COVID-19: A chronicle of pro-inflammatory cytokines. Open Biol. 2020;10 doi: 10.1098/rsob.200160.
    1. Marini J.J., Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA. 2020;323:2329–2330. doi: 10.1001/jama.2020.6825.
    1. Sinha P., Matthay M.A., Calfee C.S. Is a “Cytokine Storm” Relevant to COVID-19? JAMA Intern. Med. 2020;180:1152–1154. doi: 10.1001/jamainternmed.2020.3313.
    1. Gattinoni L., Coppola S., Cressoni M., Busana M., Rossi S., Chiumello D. COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2020;201:1299–1300. doi: 10.1164/rccm.202003-0817LE.
    1. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Huan Y., Yang P., Zhang Y., Deng W., et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med. 2005;11:875–879. doi: 10.1038/nm1267.
    1. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B., Yang P., Sarao R., Wada T., Leong-Poi H., et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–116. doi: 10.1038/nature03712.
    1. Liu Y., Yang Y., Zhang C., Huang F., Wang F., Yuan J., Wang Z., Li J., Li J., Feng C., et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020;63:364–374. doi: 10.1007/s11427-020-1643-8.
    1. Santos R.A.S., Ferreira A.J., Simoes e Silva A.C. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp. Physiol. 2008;93:519–527. doi: 10.1113/expphysiol.2008.042002.
    1. Chen D., Li X., Song Q., Hu C., Su F., Dai J., Ye Y., Huang J., Zhang X. Assessment of Hypokalemia and Clinical Characteristics in Patients with Coronavirus Disease 2019 in Wenzhou, China. JAMA Netw. Open. 2020;3:e2011122. doi: 10.1001/jamanetworkopen.2020.11122.
    1. Connell J.M.C., Davies E. The new biology of aldosterone. J. Endocrinol. 2005;186:1–20. doi: 10.1677/joe.1.06017.
    1. Choi M., Aiello E., Ennis I., Villa-Abrille M. El SRAA y el SARS-CoV-2: El acertijo a resolver. Hipertens Riesgo Vasc. 2020;37:169–175. doi: 10.1016/j.hipert.2020.05.005.
    1. Vaduganathan M., Vardeny O., Michel T., McMurray J.J., Pfeffer M.A., Solomon S.D. Renin–Angiotensin–Aldosterone System Inhibitors in Patients with COVID-19. N. Engl. J. Med. 2020;382:1653–1659. doi: 10.1056/NEJMsr2005760.
    1. Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev. Res. 2020;81:537–540. doi: 10.1002/ddr.21656.
    1. Ware L.B., Matthay M.A. Clinical practice: Acute Pulmonary Edema. N. Engl. J. Med. 2005;353:2788–2796. doi: 10.1056/NEJMcp052699.
    1. Lang M., Som A., Carey D., Reid N., Mendoza D.P., Flores E.J., Li M.D., Shepard J.-A.O., Little B.P. Pulmonary Vascular Manifestations of COVID-19 Pneumonia. Radiol. Cardiothorac. Imaging. 2020;2:e200277. doi: 10.1148/ryct.2020200277.
    1. Eslami V., Abrishami A., Zarei E., Khalili N., Baharvand Z., Sanei-Taheri M. The Association of CT-measured Cardiac Indices with Lung Involvement and Clinical Outcome in Patients with COVID-19. Acad. Radiol. 2021;28:8–17. doi: 10.1016/j.acra.2020.09.012.
    1. Argulian E., Sud K., Vogel B., Bohra C., Garg V.P., Talebi S., Lerakis S., Narula J. Right Ventricular Dilation in Hospitalized Patients With COVID-19 Infection. JACC Cardiovasc. Imaging. 2020;13:2459–2461. doi: 10.1016/j.jcmg.2020.05.010.
    1. Li Y.-L., Zheng J.-B., Jin Y., Tang R., Li M., Xiu C.-H., Dai Q.-Q., Zuo S., Wang H.-Q., Wang H.-L., et al. Acute right ventricular dysfunction in severe COVID-19 pneumonia. Rev. Cardiovasc. Med. 2020;21:635–641. doi: 10.31083/j.rcm.2020.04.159.
    1. Patil V.P., Salunke B.G. Fluid Overload and Acute Kidney Injury. Indian J. Crit. Care Med. 2020;24:94–97. doi: 10.5005/jp-journals-10071-23401.
    1. Gluecker T., Capasso P., Schnyder P., Gudinchet F., Schaller M.-D., Revelly J.-P., Chiolero R., Vock P., Wicky S. Clinical and Radiologic Features of Pulmonary Edema. RadioGraphics. 1999;19:1507–1531. doi: 10.1148/radiographics.19.6.g99no211507.
    1. Gandhi S.K., Powers J.C., Nomeir A.-M., Fowle K., Kitzman D.W., Rankin K.M., Little W.C. The Pathogenesis of Acute Pulmonary Edema Associated with Hypertension. N. Engl. J. Med. 2001;344:17–22. doi: 10.1056/NEJM200101043440103.
    1. Pan F., Ye T., Sun P., Gui S., Liang B., Li L., Zheng D., Wang J., Hesketh R.L., Yang L., et al. Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19) Radiology. 2020;295:715–721. doi: 10.1148/radiol.2020200370.
    1. Bonifazi M., Mei F., Skrami E., Latini L., Amico D., Balestro E., Bini F., Bonifazi F., Caminati A., Candoli P., et al. Predictors of Worse Prognosis in Young and Middle-Aged Adults Hospitalized with COVID-19 Pneumonia: A Multi-Center Italian Study (COVID-UNDER50) J. Clin. Med. 2021;10:1218. doi: 10.3390/jcm10061218.
    1. Tao Z., Xu J., Chen W., Yang Z., Xu X., Liu L., Chen R., Xie J., Liu M., Wu J., et al. Anemia is associated with severe illness in COVID-19: A retrospective cohort study. J. Med. Virol. 2021;93:1478–1488. doi: 10.1002/jmv.26444.
    1. Taneri P.E., Gómez-Ochoa S.A., Llanaj E., Raguindin P.F., Rojas L.Z., Roa-Díaz Z.M., Salvador D., Jr., Groothof D., Minder B., Kopp-Heim D., et al. Anemia and iron metabolism in COVID-19: A systematic review and meta-analysis. Eur. J. Epidemiol. 2020;35:763–773. doi: 10.1007/s10654-020-00678-5.
    1. Hariyanto T.I., Kurniawan A. Anemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Transfus. Apher. Sci. 2020;59:102926. doi: 10.1016/j.transci.2020.102926.
    1. Hu L., Gong L., Jiang Z., Wang Q., Zou Y., Zhu L. Clinical analysis of sinus bradycardia in patients with severe COVID-19 pneumonia. Crit. Care. 2020;24:257. doi: 10.1186/s13054-020-02933-3.
    1. Amaratunga E.A., Corwin D.S., Moran L., Snyder R. Bradycardia in Patients With COVID-19: A Calm Before the Storm? Cureus. 2020;12:e8599. doi: 10.7759/cureus.8599.
    1. Capoferri G., Osthoff M., Egli A., Stoeckle M., Bassetti S. Relative bradycardia in patients with COVID-19. Clin. Microbiol. Infect. 2021;27:295–296. doi: 10.1016/j.cmi.2020.08.013.
    1. Habib M.B., Elshafei M., Rahhal A., Mohamed M.F.H. Severe sinus bradycardia associated with favipiravir in a COVID-19 patient. Clin. Case Rep. 2021;9:e04566. doi: 10.1002/ccr3.4566.
    1. Amir M., Renata A., Ratana L.T. Symptomatic sinus bradycardia due to electrolyte imbalances in syndrome of inappropriate antidiuretic hormone (SIADH) related COVID-19: A case report. BMC Infect. Dis. 2021;21:465. doi: 10.1186/s12879-021-06143-2.
    1. Kang Y., Wang H., Chen H., Wang B., Yang Y., Zhao X., Ran Q., Wei J. Suspected Hydroxychloroquine-Induced Sinus Bradycardia and QTc Prolongation in a Patient with COVID-19. Int. Hear. J. 2020;61:1056–1058. doi: 10.1536/ihj.20-271.
    1. Touafchia A., Bagheri H., Carrié D., Durrieu G., Sommet A., Chouchana L., Montastruc F. Serious bradycardia and remdesivir for coronavirus 2019 (COVID-19): A new safety concerns. Clin. Microbiol. Infect. 2021;27:791.e5–791.e8. doi: 10.1016/j.cmi.2021.02.013.
    1. Attena E., Albani S., Maraolo A.E., Mollica M., De Rosa A., Pisapia R., Fiorentino G., Parrella R., Severino S., Russo V. Remdesivir-Induced Bradycardia in COVID-19: A Single Center Prospective Study. Circ. Arrhythmia Electrophysiol. 2021;14:e009811. doi: 10.1161/CIRCEP.121.009811.
    1. Beyls C., Martin N., Hermida A., Abou-Arab O., Mahjoub Y. Lopinavir-Ritonavir Treatment for COVID-19 Infection in Intensive Care Unit. Circ. Arrhythmia Electrophysiol. 2020;13:e008798. doi: 10.1161/CIRCEP.120.008798.
    1. Maiese A., Manetti A.C., La Russa R., Di Paolo M., Turillazzi E., Frati P., Fineschi V. Autopsy findings in COVID-19-related deaths: A literature review. Forensic Sci. Med. Pathol. 2021;17:279–296. doi: 10.1007/s12024-020-00310-8.
    1. Gibson P.G., Qin L., Puah S.H. COVID-19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre-COVID-19 ARDS. Med. J. Aust. 2020;213:54e1–56e1. doi: 10.5694/mja2.50674.
    1. Mason R.J. Thoughts on the alveolar phase of COVID-19. Am. J. Physiol. Cell. Mol. Physiol. 2020;319:L115–L120. doi: 10.1152/ajplung.00126.2020.
    1. Pomara C., Volti G.L., Cappello F. COVID-19 Deaths: Are We Sure It Is Pneumonia? Please, Autopsy, Autopsy, Autopsy! J. Clin. Med. 2020;9:1259. doi: 10.3390/jcm9051259.
    1. Carey R.M., Padia S.H. Physiology and regulation of the renin–Angiotensin–Aldosterone system. In: Singh A.K., Williams G.H., editors. Textbook of Nephro-Endocrinology. 2nd ed. Academic Press; London, UK: 2018. [(accessed on 13 September 2021)]. pp. 1–25. Available online: .
    1. Aoyagi T., Izumi Y., Hiroyama M., Matsuzaki T., Yasuoka Y., Sanbe A., Miyazaki H., Fujiwara Y., Nakayama Y., Kohda Y., et al. Vasopressin regulates the renin-angiotensin-aldosterone system via V1a receptors in macula densa cells. Am. J. Physiol. Physiol. 2008;295:F100–F107. doi: 10.1152/ajprenal.00088.2008.
    1. Firth J., Raine A., Ledingham J. Raised venous pressure: A direct cause of renal sodium retention in oedema? Lancet. 1988;331:1033–1035. doi: 10.1016/S0140-6736(88)91851-X.
    1. Chappell D., Bruegger D., Potzel J., Jacob M., Brettner F., Vogeser M., Conzen P., Becker B.F., Rehm M. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit. Care. 2014;18:538. doi: 10.1186/s13054-014-0538-5.
    1. Mei F., Berardino A.D.M., Bonifazi M., Latini L., Zuccatosta L., Gasparini S. Validation of Remote Dielectric Sensing (ReDS) in Monitoring Adult Patients Affected by COVID-19 Pneumonia. Diagnostics. 2021;11:1003. doi: 10.3390/diagnostics11061003.

Source: PubMed

3
구독하다