Circulatory Response to Rapid Volume Expansion and Cardiorespiratory Fitness in Fontan Circulation

Thomas Möller, Vibeke Klungerbo, Simone Diab, Henrik Holmstrøm, Elisabeth Edvardsen, Guro Grindheim, Henrik Brun, Erik Thaulow, Alvaro Köhn-Luque, Assami Rösner, Gaute Døhlen, Thomas Möller, Vibeke Klungerbo, Simone Diab, Henrik Holmstrøm, Elisabeth Edvardsen, Guro Grindheim, Henrik Brun, Erik Thaulow, Alvaro Köhn-Luque, Assami Rösner, Gaute Døhlen

Abstract

The role of dysfunction of the single ventricle in Fontan failure is incompletely understood. We aimed to evaluate hemodynamic responses to preload increase in Fontan circulation, to determine whether circulatory limitations in different locations identified by experimental preload increase are associated with cardiorespiratory fitness (CRF), and to assess the impact of left versus right ventricular morphology. In 38 consecutive patients (median age = 16.6 years, 16 females), heart catheterization was supplemented with a rapid 5-mL/kg body weight volume expansion. Central venous pressure (CVP), ventricular end-diastolic pressure (VEDP), and peak systolic pressure were averaged for 15‒30 s, 45‒120 s, and 4‒6 min (steady state), respectively. CRF was assessed by peak oxygen consumption (VO2peak) and ventilatory threshold (VT). Median CVP increased from 13 mmHg at baseline to 14.5 mmHg (p < 0.001) at steady state. CVP increased by more than 20% in eight patients. Median VEDP increased from 10 mmHg at baseline to 11.5 mmHg (p < 0.001). Ten patients had elevated VEDP at steady state, and in 21, VEDP increased more than 20%. The transpulmonary pressure difference (CVP‒VEDP) and CVP were consistently higher in patients with right ventricular morphology across repeated measurements. CVP at any stage was associated with VO2peak and VT. VEDP after volume expansion was associated with VT. Preload challenge demonstrates the limitations beyond baseline measurements. Elevation of both CVP and VEDP are associated with impaired CRF. Transpulmonary flow limitation was more pronounced in right ventricular morphology. Ventricular dysfunction may contribute to functional impairment after Fontan operation in young adulthood.ClinicalTrials.gov identifier NCT02378857.

Keywords: Fontan circulation; Hemodynamics; Preload challenge; Transpulmonary gradient; Univentricular congenital heart defects; Ventricular function.

Conflict of interest statement

None.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart of patient enrollment in the present study. CPET cardiopulmonary exercise test, HC heart catheterization, HT heart transplantation
Fig. 2
Fig. 2
Heart rate response to rapid volume expansion (RVE) in non-pacemaker patients (N = 31)
Fig. 3
Fig. 3
Central venous pressure before and after rapid volume expansion (RVE)
Fig. 4
Fig. 4
Ventricular end-diastolic pressure before and after rapid volume expansion (RVE). Central illustration: Rapid volume expansion by intravenous saline bolus unmasks limitations of the Fontan circulation by pressure rise upstream from the blood flow restriction(s)

References

    1. Kverneland LS, Kramer P, Ovroutski S. Five decades of the Fontan operation: a systematic review of international reports on outcomes after univentricular palliation. Congenit Heart Dis. 2018;13:181–193. doi: 10.1111/chd.12570.
    1. Goldberg DJ, Zak V, McCrindle BW, Ni H, Gongwer R, Rhodes J, Garofano RP, Kaltman JR, Lambert LM, Mahony L, Margossian R, Spector ZZ, Williams RV, Atz AM, Paridon SM, Pediatric Heart Network I. Exercise capacity and predictors of performance after fontan: results from the pediatric heart network Fontan 3 study. Pediatr Cardiol. 2021;42:158–168. doi: 10.1007/s00246-020-02465-1.
    1. Gewillig M, Brown SC. The Fontan circulation after 45 years: update in physiology. Heart. 2016;102:1081–1086. doi: 10.1136/heartjnl-2015-307467.
    1. Snarr BS, Paridon SM, Rychik J, Goldberg DJ. Pulmonary vasodilator therapy in the failing Fontan circulation: rationale and efficacy. Cardiol Young. 2015;25:1489–1492. doi: 10.1017/S1047951115002309.
    1. De Mey W, Cools B, Heying R, Budts W, Louw JJ, Boshoff DE, Brown SC, Gewillig M. Can a volume challenge pinpoint the limiting factor in a Fontan circulation? Acta Cardiol. 2015;70:536–542. doi: 10.2143/AC.70.5.3110514.
    1. Averin K, Hirsch R, Seckeler MD, Whiteside W, Beekman RH, 3rd, Goldstein BH. Diagnosis of occult diastolic dysfunction late after the Fontan procedure using a rapid volume expansion technique. Heart. 2016;102:1109–1114. doi: 10.1136/heartjnl-2015-309042.
    1. Udholm S, Aldweib N, Hjortdal VE, Veldtman GR. Prognostic power of cardiopulmonary exercise testing in Fontan patients: a systematic review. Open Heart. 2018;5:e000812. doi: 10.1136/openhrt-2018-000812.
    1. Ohuchi H, Negishi J, Miike H, Toyoshima Y, Morimoto H, Fukuyama M, Iwasa T, Sakaguchi H, Miyazaki A, Shiraishi I, Kurosaki K, Nakai M. Positive pediatric exercise capacity trajectory predicts better adult Fontan physiology rationale for early establishment of exercise habits. Int J Cardiol. 2019;274:80–87. doi: 10.1016/j.ijcard.2018.06.067.
    1. Hedlund ER, Lundell B, Soderstrom L, Sjoberg G. Can endurance training improve physical capacity and quality of life in young Fontan patients? Cardiol Young. 2017 doi: 10.1017/S1047951117002360.
    1. Hebson CL, McCabe NM, Elder RW, Mahle WT, McConnell M, Kogon BE, Veledar E, Jokhadar M, Vincent RN, Sahu A, Book WM. Hemodynamic phenotype of the failing Fontan in an adult population. Am J Cardiol. 2013;112:1943–1947. doi: 10.1016/j.amjcard.2013.08.023.
    1. Egbe AC, Connolly HM, Miranda WR, Ammash NM, Hagler DJ, Veldtman GR, Borlaug BA. Hemodynamics of Fontan failure: the role of pulmonary vascular disease. Circ Heart Fail. 2017;10:e004515. doi: 10.1161/CIRCHEARTFAILURE.117.004515.
    1. Fredriksen PM, Ingjer F, Thaulow E. A protocol for testing aerobic capacity in children and adolescents with congenital heart defects. Tidsskr Nor Laegeforen. 1998;118:2636–2639.
    1. Fredriksen PM, Ingjer F, Nystad W, Thaulow E. A comparison of VO2(peak) between patients with congenital heart disease and healthy subjects, all aged 8–17 years. Eur J Appl Physiol. 1999;80:409–416. doi: 10.1007/s004210050612.
    1. Wasserman K. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. 5. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.
    1. Fujimoto N, Borlaug BA, Lewis GD, Hastings JL, Shafer KM, Bhella PS, Carrick-Ranson G, Levine BD. Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure. Circulation. 2013;127:55–62. doi: 10.1161/CIRCULATIONAHA.112.111302.
    1. Wall O, Ehrenberg L, Joelsson-Alm E, Martensson J, Bellomo R, Svensen C, Cronhjort M. Haemodynamic effects of cold versus warm fluid bolus in healthy volunteers: a randomised crossover trial. Crit Care Resusc. 2018;20:277–284.
    1. Crystal GJ, Salem MR. The Bainbridge and the "reverse" Bainbridge reflexes: history, physiology, and clinical relevance. Anesth Analg. 2012;114:520–532. doi: 10.1213/ANE.0b013e3182312e21.
    1. Gewillig M, Cools B, Van De Bruaene A. Pulmonary vascular reserve in Fontan patients: looking upstream for the true heart of the matter. J Am Coll Cardiol. 2020;76:2764–2767. doi: 10.1016/j.jacc.2020.10.006.
    1. Goldberg DJ, French B, McBride MG, Marino BS, Mirarchi N, Hanna BD, Wernovsky G, Paridon SM, Rychik J. Impact of oral sildenafil on exercise performance in children and young adults after the Fontan operation: a randomized, double-blind, placebo-controlled, crossover trial. Circulation. 2011;123:1185–1193. doi: 10.1161/CIRCULATIONAHA.110.981746.
    1. Schuuring MJ, Vis JC, van Dijk AP, van Melle JP, Vliegen HW, Pieper PG, Sieswerda GT, de Bruin-Bon RH, Mulder BJ, Bouma BJ. Impact of Bosentan on exercise capacity in adults after the Fontan procedure: a randomized controlled trial. Eur J Heart Fail. 2013;15:690–698. doi: 10.1093/eurjhf/hft017.
    1. Giardini A, Hager A, Pace Napoleone C, Picchio FM. Natural history of exercise capacity after the Fontan operation: a longitudinal study. Ann Thorac Surg. 2008;85:818–821. doi: 10.1016/j.athoracsur.2007.11.009.
    1. Grosse-Wortmann L, Al-Otay A, Yoo SJ. Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI. Circ Cardiovasc Imaging. 2009;2:219–225. doi: 10.1161/CIRCIMAGING.108.834192.
    1. Klimes K, Ovroutski S, Abdul-Khaliq H, Ewert P, Alexi-Meskishvili V, Kuehne T, Gutberlet M, Berger F. Exercise capacity reflects ventricular function in patients having the Fontan circulation. Cardiol Young. 2009;19:340–345. doi: 10.1017/S1047951109990424.
    1. Ohuchi H, Ono S, Tanabe Y, Fujimoto K, Yagi H, Sakaguchi H, Miyazaki A, Yamada O. Long-term serial aerobic exercise capacity and hemodynamic properties in clinically and hemodynamically good, "excellent", Fontan survivors. Circ J. 2012;76:195–203. doi: 10.1253/circj.cj-11-0540.
    1. Hebert A, Jensen AS, Mikkelsen UR, Idorn L, Sorensen KE, Thilen U, Hanseus K, Sondergaard L. Hemodynamic causes of exercise intolerance in Fontan patients. Int J Cardiol. 2014;175:478–483. doi: 10.1016/j.ijcard.2014.06.015.
    1. Khiabani RH, Whitehead KK, Han D, Restrepo M, Tang E, Bethel J, Paridon SM, Fogel MA, Yoganathan AP. Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. Heart. 2015;101:139–143. doi: 10.1136/heartjnl-2014-306337.

Source: PubMed

3
구독하다