Correlation between NK function and response to trastuzumab in metastatic breast cancer patients

Alessandra Beano, Elena Signorino, Andrea Evangelista, Davide Brusa, Marinella Mistrangelo, Maria Antonia Polimeni, Rosella Spadi, Michela Donadio, Libero Ciuffreda, Lina Matera, Alessandra Beano, Elena Signorino, Andrea Evangelista, Davide Brusa, Marinella Mistrangelo, Maria Antonia Polimeni, Rosella Spadi, Michela Donadio, Libero Ciuffreda, Lina Matera

Abstract

Background: Trastuzumab is a monoclonal antibody selectively directed against Her2 and approved for the treatment of Her2 overexpressing breast cancer patients. Its proposed mechanisms of action include mediation of antibody-dependent cellular cytotoxicity (ADCC) by triggering FcgammaRIII on natural killer (NK) cells. This study addresses the correlation between overall NK function and trastuzumab's clinical activity.

Subjects and methods: Clinical and immunological responses were assessed in 26 patients receiving trastuzumab monotherapy as maintenance management after chemotherapy (8 mg/kg load and then standard doses of 6 mg/kg every 3 weeks). Cytotoxic activity against the MHC class I-negative standard NK target K562 cell line and HER2-specific ADCC against a trastuzumab-coated Her2-positive SKBR3 cell line were assessed in peripheral blood mononuclear cells (PBMC) harvested after the first standard dose. After six months, seventeen patients were scored as responders and nine as non-responders according to the RECIST criteria, while Progression-Free Survival (PFS) was calculated during a 12 months follow-up.

Results: The responders had significantly higher levels of both NK and ADCC activities (p < 0.05) that were not different from those of eleven normal controls. The NK activity of the non-responders was significantly (p < 0.05) lower than that of the normal controls. At twelve months, there was a marked correlation between PFS and NK activity only. PFS was significantly longer in patients with high levels of NK activity, whereas its pattern was unrelated to high or low ADCC activity.

Conclusion: One of the mechanisms of action of trastuzumab is NK cell-mediated ADCC lysis of the Her2-positve target cell. We show here that its potency is correlated with the short-term response to treatment, whereas longer protection against tumor expansion seems to be mediated by pure NK activity.

Figures

Figure 1
Figure 1
Different Her2 expression of the ADCC target cell lines. The human breast carcinoma cell lines MCF7 and SKBR3 were stained with the humanized anti-Her2 MoAb trastuzumab (Genentech Inc. San Francisco, California, USA) and analysed by flow cytometry.
Figure 2
Figure 2
NK and ADCC profile of patients classified as responders and non-responders after a six-month trastuzumab regimen. NK and ADCC activities of PBMC were tested at the start of trastuzumab therapy against the target K562 cell line (A) and the trastuzumab-coated Her2-positive cell line SKBR3 (B) in a 51Cr release assay. The trastuzumab-coated Her2-negative cell line MCF7 (C) was used as control for ADCC. Values of NK (A) and ADCC (B) cytotoxicity were always significantly higher in responders at all three E:T ratios.
Figure 3
Figure 3
Responders have normal NK and ADCC activities. NK and ADCC activities were assessed as described in legend to Fig. 2. Values (A and B) were not significantly different in responders compared to 11 normal donors at all three E:T ratios. As expected, negligible ADCC activity was found both in patients and normal donors against the Her2-negative cell line MCF7 (C).
Figure 4
Figure 4
Non-responder patients have defective NK activity. NK and ADCC activities were assessed as described in legend to Fig. 2. Values of NK activity (A) were significantly lower in patients compared to normal donors at three E:T ratios. ADCC activity (B) was significantly lower in patients only at the highest E:T ratio. As expected, negligible ADCC activity was found both in patients and normal donors against the Her2-negative cell line MCF7 (C).
Figure 5
Figure 5
Global time to tumor progression at twelve months. The Kaplan-Meier PFS curve shows that the percentage of progression-free patients is 75% at six months from start of Trastuzumab therapy and declines to 50% at twelve months.
Figure 6
Figure 6
Time to tumor progression is correlated with the NK activity. A cut-off of 5%. 3% and 2% cytotoxicity was chosen to discriminate between high and low NK levels at the three E:T ratios of 50:1, 25:1 and 12:1 respectively and a stratified PFS curve was created from these values. The figure shows that higher NK values are significantly (Log-Rank test p values) correlated with longer time to tumor progression.
Figure 7
Figure 7
Time to tumor progression is not correlated with the ADCC activity. A cut-off of 10%, 6% and 4% cytotoxicity was arbitrarly chosen to discriminate between high and low levels ADCC at the three E:T ratios of 50:1, 25:1 and 12:1 respectively and a stratified PFS curve was created from these values. The pattern of the two curves and the Log-Rank test p values demonstrated that time to tumor progression was not correlated with the ADCC.

References

    1. Boyle P, Ferlay J. Cancer incidence and mortality in Europe. Ann Oncol. 2005;16:481–488. doi: 10.1093/annonc/mdi098.
    1. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the Her-2/neu oncogene. Science. 1987;235:177–182. doi: 10.1126/science.3798106.
    1. Owens MA, Horten BC, Da Silva MM. HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer. 2004;5:63–69.
    1. Ross JS, Fletcher JA, Linette GP, Ross JS, Fletcher JA, Linette GP. The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist. 2003;8:307–325. doi: 10.1634/theoncologist.8-4-307.
    1. Gusterson BA, Gelber RD, Goldhirsch A, Price KN, Säve-Söderborgh J, Anbazhagan R, Styles J, Rudenstam CM, Golouh R, Reed R. Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group J Clin Oncol. 1992;10:1049–1056.
    1. Hynes NE, Stern DF. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta. 1994;1198:165–184.
    1. Carter P, Presta L, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA. 1992;89:4285–4289. doi: 10.1073/pnas.89.10.4285.
    1. Slamon DJ, Leyland-Jones B, Shak S. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–792. doi: 10.1056/NEJM200103153441101.
    1. Vogel CL, Cobleigh MA, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20:719–726. doi: 10.1200/JCO.20.3.719.
    1. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ. Mechanisms of Disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 2006;3:269–280. doi: 10.1038/ncponc0509.
    1. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001;61:4744–4749.
    1. Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumour action. Cancer Res. 2002;62:4132–4141.
    1. Le XF, Claret FX, Lammayot A, Tian L, Deshpande D, LaPushin R, Tari AM, Bast RC., Jr The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumour growth inhibition. J Biol Chem. 2003;278:23441–23450. doi: 10.1074/jbc.M300848200.
    1. Jackson JG, St Clair P, Sliwkowski MX, Brattain MG. Blockade of epidermal growth factor- or heregulin-dependent ErbB2 activation with the anti-ErbB2 monoclonal antibody 2C4 has divergent downstream signaling and growth effects. Cancer Res. 2004;64:2601–2609. doi: 10.1158/0008-5472.CAN-03-3106.
    1. Mohsin SK, Weiss HL, Gutierrez MC, Chamness GC, Schiff R, Digiovanna MP, Wang CX, Hilsenbeck SG, Osborne CK, Allred DC, Elledge R, Chang JC. Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J Clin Oncol. 2005;23:2460–2468. doi: 10.1200/JCO.2005.00.661.
    1. Tokuda Y, Ohnishi Y, Shimamura K, Iwasawa M, Yoshimura M, Ueyama Y, Tamaoki N, Tajima T, Mitomi T. In vitro and in vivo anti-tumour effects of a humanised monoclonal antibody against c-erbB-2 product. Br J Cancer. 1996;73:1362–1365.
    1. Cooley S, Burns LJ, Repka T, Miller JS. Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu. Exp Hematol. 1999;27:1533–1541. doi: 10.1016/S0301-472X(99)00089-2.
    1. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000;6:443–446. doi: 10.1038/74704.
    1. Carson WE, Parihar R, Lindemann MJ, Personeni N, Dierksheide J, Meropol NJ, Baselga J, Caligiuri MA. Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2/neu-positive breast cancer cells. Eur J Immunol. 2001;31:3016–3025. doi: 10.1002/1521-4141(2001010)31:10<3016::AID-IMMU3016>;2-J.
    1. Repka T, Chiorean EG, Gay J, Herwig KE, Kohl VK, Yee D, Miller JS. Trastuzumab and interleukin-2 in Her2-positive metastatic breast cancer: a pilot study. Clin Canc Res. 2003;9:2440–2446.
    1. Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E, Castiglioni F, Villani L, Magalotti C, Gibelli N, Oliviero B, Ballardini B, Da Prada G, Zambelli A, Costa A. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res. 2004;10:5650–5655. doi: 10.1158/1078-0432.CCR-04-0225.
    1. Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C, Cabaret V, Fermeaux V, Bertheau P, Garnier J, Jeannin J-F, Coudert B. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? British Journal of Cancer. 2006;94:259–267. doi: 10.1038/sj.bjc.6602930.
    1. Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990;76:2421–2438.
    1. Lozzio BB, Lozzio CB. Properties of the K562 cell line derived from a patient with chronic myeloid leukemia. Int J Cancer. 1977;19:136–139. doi: 10.1002/ijc.2910190119.
    1. Matera L, Beltramo E, Martinuzzi E, Buttiglieri S. Effect of prolactin on carcinoembryonic antigen-specific cytotoxic T lymphocyte response induced by dendritic cells. Clin Exp Immunol. 2004;137:320–328. doi: 10.1111/j.1365-2249.2004.02533.x.
    1. Fleming GF, Meropol NJ, Rosner GL, Hollis DR, Carson WE, 3rd, Caligiuri M, Mortimer J, Tkaczuk K, Parihar R, Schilsky RL, Ratain MJ. A phase I trial of escalating doses of trastuzumab combined with daily subcutaneous interleukin 2: report of cancer and leukemia group B 9661. Clin Cancer Res. 2002;8:3718–3727.
    1. Parihar R, Nadella P, Lewis A, Jensen R, De Hoff C, Dierksheide JE, VanBuskirk AM, Magro CM, Young DC, Shapiro CI, Carson WE. A phase I study of interleukin 12 with trastuzumab in patients with human epidermal growth factor receptor-2-overexpressing malignancies: analysis of sustained interferon gamma production in a subset of patients. Clin Cancer Res. 2004;10:5027–37. doi: 10.1158/1078-0432.CCR-04-0265.
    1. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99:754–758. doi: 10.1182/blood.V99.3.754.
    1. Varchetta S, Gibelli N, Oliviero B, Cardini E, Gennari R, Gatti G, Santos Silva L, Villani L, Tagliabue E, Ménard S, Costa A, Fagnoni FF. Elements Related to Heterogeneity of Antibody-Dependent Cell Cytotoxicity in Patients Under Trastuzumab Therapy for Primary Operable Breast Cancer Overexpressing Her2. Cancer Research. 2007;67:11991–11999. doi: 10.1158/0008-5472.CAN-07-2068.
    1. Seliger B, Ritz U, Ferrone S. Molecular mechanisms of HLA class I antigen abnormalities following viral infection and transformation. Int J Cancer. 2006;118:129–3831. doi: 10.1002/ijc.21312.
    1. Shahied LS, Tang Y, Alpaugh RK, Somer R, Greenspon D, Weiner LM. Bispecific minibodies targeting HER2/neu and CD16 exhibit improved tumour lysis when placed in a divalent tumour antigen binding format. J Biol Chem. 2004;279:53907–53914. doi: 10.1074/jbc.M407888200.
    1. Roda JM, Parihar R, Magro C, Nuovo GJ, Tridandapani S, Carson WE., 3rd Natural Killer Cells Produce T Cell-Recruiting Chemokines in Response to Antibody-Coated Tumor Cells. Cancer Research. 2006;66:517–526. doi: 10.1158/0008-5472.CAN-05-2429.
    1. Roda JM, Joshi T, Butchar JP, McAlees JW, Lehman A, Tridandapani S, Carson WE., 3rd The Activation of Natural Killer Cell Effector Functions by Cetuximab-Coated, Epidermal Growth Factor Receptor-Positive Tumor Cells is Enhanced By Cytokines. Clinical Cancer Research. 2007;13:6419–6428. doi: 10.1158/1078-0432.CCR-07-0865.

Source: PubMed

3
구독하다