Investigation of the Possible Correlation between Idiopathic Parkinson's Disease and Diabetes Mellitus in Egyptian Patients: A Pilot Study

Afnan AwadAllah Elgnainy, Mohammad Ismail Hamed, Wael Osman Mohamed, Nagwa Ali Sabri, Afnan AwadAllah Elgnainy, Mohammad Ismail Hamed, Wael Osman Mohamed, Nagwa Ali Sabri

Abstract

Objectives: To study the diabetes-Parkinson's disease (PD) linkage.

Methods: The investigators recorded the rapid eye movement sleep behavior disorder screening questionnaire (RBDSQ) score for 60 diabetic patients: 30 patients were treated with metformin-inclusive sulfonylurea and 30 patients were treated with sulphonylurea(s) monotherapy and matched with 30 controls. We evaluated blood glucose kinetics during a 75 g oral glucose tolerance test for (22) nondiabetic parkinsonian patients and (10) controls. The motor complications scores were recorded for all parkinsonian patients using the relevant parts of the Unified Parkinson's Disease Rating Scale (UPDRS) part IV.

Results: Diabetics recorded higher scores of RBDSQ than controls (p < 0.001), with no differences related to antidiabetic therapy. In nondiabetic PD patients, after oral glucose, blood glucose was significantly higher at T1 (p < 0.001) than controls. Moreover, the total area under the time curve for blood glucose levels was significantly higher in PD compared to controls (281.22 ± 52.25 vs. 245.65 ± 48.63 mg.hr./dL; p=0.013). Higher blood glucose levels were associated with motor abnormalities. Diabetic PD patients recorded higher scores of UPDRS (p < 0.001).

Conclusion: Diabetes mellitus and Parkinson's disease are linked, which raises concerns about either of them, probably increasing the risk of the other. This trial is registered with NCT03685357.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2021 Afnan AwadAllah Elgnainy et al.

Figures

Figure 1
Figure 1
Diagrammatic chart for the study design.
Figure 2
Figure 2
Positive and significant correlation between the RBDSQ score and HbA1c.
Figure 3
Figure 3
Blood glucose kinetics during the 75 g oral glucose tolerance test (OGTT).
Figure 4
Figure 4
Scatter plot between motor abnormalities and PD duration.
Figure 5
Figure 5
Scatter plot between motor abnormalities and HbA1c.
Figure 6
Figure 6
Scatter plot between motor abnormalities and FBG.

References

    1. Fiory F., Perruolo G., Cimmino I., et al. The relevance of insulin action in the dopaminergic system. Frontiers in Neuroscience . 2019;13:p. 868. doi: 10.3389/fnins.2019.00868.
    1. Hassan A., Kandel R. S., Mishra R., Gautam J., Alaref A., Jahan N. Diabetes mellitus and Parkinson’s disease: shared pathophysiological links and possible therapeutic implications. Cureus . 2020;12(8)
    1. Yue X., Li H., Yan H., Zhang P., Chang L., Li T. Risk of Parkinson disease in diabetes mellitus. Medicine . 2016;95(18):p. e3549. doi: 10.1097/md.0000000000003549.
    1. Renaud J., Bassareo V., Beaulieu J., et al. Dopaminergic neurodegeneration in a rat model of long-term hyperglycemia: preferential degeneration of the nigrostriatal motor pathway. Neurobiology of Aging . 2018;69:117–128. doi: 10.1016/j.neurobiolaging.2018.05.010.
    1. Li W., Risacher S. L., Huang E., Saykin A. J., Initiative A. D. N. Type 2 diabetes mellitus is associated with brain atrophy and hypometabolism in the ADNI cohort. Neurology . 2016;87(6):595–600. doi: 10.1212/WNL.0000000000002950.
    1. Noyce A. J., Lees A. J., Schrag A.-E. The prediagnostic phase of Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry . 2016;87(8):871–878. doi: 10.1136/jnnp-2015-311890.
    1. Schapira A. H. V., Chaudhuri K. R., Jenner P. Non-motor features of Parkinson disease. Nature Reviews Neuroscience . 2017;18(7):435–450. doi: 10.1038/nrn.2017.62.
    1. Berg D., Postuma R. B., Adler C. H., et al. MDS research criteria for prodromal Parkinson’s disease. Movement Disorders . 2015;30(12):1600–1611. doi: 10.1002/mds.26431.
    1. Rees R. N., Noyce A. J., Schrag A. The prodromes of Parkinson’s disease. European Journal of Neuroscience . 2019;49(3):320–327. doi: 10.1111/ejn.14269.
    1. Sixel-Dö F., Schweitzer M., Mollenhauer B., Trenkwalder C. Intraindividual variability of REM sleep behavior disorder in Parkinson’s disease: a comparative assessment using a new REM sleep behavior disorder severity scale (RBDSS) for clinical routine. Journal of Clinical Sleep Medicine . 2011;7(1):75–80.
    1. Arnulf I. REM sleep behavior disorder: motor manifestations and pathophysiology. Movement Disorders . 2012;27(6):677–689. doi: 10.1002/mds.24957.
    1. American Academy of Sleep Medicine. Diagnostic Coding Manual . Darien, IL, USA: American Academy of Sleep Medicine; 2005. International classification of sleep disorders: diagnostic and coding manual. (ICSD-2)
    1. Li K., Li S.-H., Su W., Chen H.-B. Diagnostic accuracy of REM sleep behaviour disorder screening questionnaire: a meta-analysis. Neurological Sciences . 2017;38(6):1039–1046. doi: 10.1007/s10072-017-2886-9.
    1. Patil S. P., Jain P. D., Ghumatkar P. J., Tambe R., Sathaye S. Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience . 2014;277:747–754. doi: 10.1016/j.neuroscience.2014.07.046.
    1. Mahmood K., Naeem M., Rahimnajjad N. A. Metformin: the hidden chronicles of a magic drug. European Journal of Internal Medicine . 2013;24(1):20–26. doi: 10.1016/j.ejim.2012.10.011.
    1. Marques A., Dutheil F., Durand E., et al. Glucose dysregulation in Parkinson’s disease: too much glucose or not enough insulin? Parkinsonism & Related Disorders . 2018;55:122–127. doi: 10.1016/j.parkreldis.2018.05.026.
    1. Smith J. L., Ju J.-S., Saha B. M., Racette B. A., Fisher J. S. Levodopa with carbidopa diminishes glycogen concentration, glycogen synthase activity, and insulin-stimulated glucose transport in rat skeletal muscle. Journal of Applied Physiology . 2004;97(6):2339–2346. doi: 10.1152/japplphysiol.01219.2003.
    1. Pagano G., Polychronis S., Wilson H., et al. Diabetes mellitus and Parkinson disease. Neurology . 2018;90(19):e1654–e1662. doi: 10.1212/wnl.0000000000005475.
    1. Kotagal V., Albin R. L., Müller M. L. T. M., Koeppe R. A., Frey K. A., Bohnen N. I. Diabetes is associated with postural instability and gait difficulty in Parkinson disease. Parkinsonism & Related Disorders . 2013;19(5):522–526. doi: 10.1016/j.parkreldis.2013.01.016.
    1. Song J., Kim J. Degeneration of dopaminergic neurons due to metabolic alterations and Parkinson’s disease. Frontiers in Aging Neuroscience . 2016;8:p. 65. doi: 10.3389/fnagi.2016.00065.
    1. Mohamed Ibrahim N., Ramli R., Shah S. A. Diabetes mellitus accelerates the onset of levodopa-related motor complications and leads to lower MoCA scores in patients with mild to moderate Parkinsons disease. Parkinsonism & Related Disorders . 2018;46:p. e67. doi: 10.1016/j.parkreldis.2017.11.227.
    1. Stiasny‐Kolster K., Mayer G., Schäfer S., Möller J. C., Heinzel‐Gutenbrunner M., Oertel W. H. The REM sleep behavior disorder screening questionnaire—a new diagnostic instrument. Movement Disorders . 2007;22(16):2386–2393.
    1. de Pablo-Fernandez E., Goldacre R., Pakpoor J., Noyce A. J., Warner T. T. Association between diabetes and subsequent Parkinson disease. Neurology . 2018;91(2):e139–e142. doi: 10.1212/wnl.0000000000005771.
    1. Yang Y.-W., Hsieh T.-F., Li C.-I., et al. Increased risk of Parkinson disease with diabetes mellitus in a population-based study. Medicine . 2017;96(3) doi: 10.1097/md.0000000000005921.e5921
    1. Wang H. MicroRNAs, Parkinson’s disease, and diabetes mellitus. International Journal of Molecular Sciences . 2021;22(6):p. 2953. doi: 10.3390/ijms22062953.
    1. Santiago J. A., Potashkin J. A. Shared dysregulated pathways lead to Parkinson’s disease and diabetes. Trends in Molecular Medicine . 2013;19(3):176–186. doi: 10.1016/j.molmed.2013.01.002.
    1. Ben-Joseph A., Marshall C. R., Lees A. J., Noyce A. J. Ethnic variation in the manifestation of Parkinson’s disease: a narrative review. Journal of Parkinson’s Disease . 2020;10(1):31–45. doi: 10.3233/jpd-191763.
    1. Zheng Y., Ley S. H., Hu F. B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology . 2018;14(2):88–98. doi: 10.1038/nrendo.2017.151.
    1. Cilia R., Akpalu A., Sarfo F. S., et al. The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa. Brain . 2014;137(10):2731–2742. doi: 10.1093/brain/awu195.
    1. Cubo E., Doumbe J., Martinez-Martin P., et al. Comparison of the clinical profile of Parkinson’s disease between Spanish and Cameroonian Cohorts. Journal of the Neurological Sciences . 2014;336(1–2):122–126. doi: 10.1016/j.jns.2013.10.021.
    1. Hamada S. M. Postural stability in patients with Parkinson’s disease versus patients with type 2 diabetes mellitus. The Egyptian Journal of Otolaryngology . 2018;34(1):84–89.
    1. Wahlqvist M. L., Lee M.-S., Hsu C.-C., Chuang S.-Y., Lee J.-T., Tsai H.-N. Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring with Type 2 diabetes in a Taiwanese population cohort. Parkinsonism & Related Disorders . 2012;18(6):753–758. doi: 10.1016/j.parkreldis.2012.03.010.
    1. Wang C., Liu C., Gao K., et al. Metformin preconditioning provide neuroprotection through enhancement of autophagy and suppression of inflammation and apoptosis after spinal cord injury. Biochemical and Biophysical Research Communications . 2016;477(4):534–540. doi: 10.1016/j.bbrc.2016.05.148.
    1. Rotermund C., Machetanz G., Fitzgerald J. C. The therapeutic potential of metformin in neurodegenerative diseases. Frontiers in Endocrinology . 2018;9(400):p. 400. doi: 10.3389/fendo.2018.00400.
    1. Butterfield D. A., di Domenico F., Barone E. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease . 2014;1842(9):1693–1706. doi: 10.1016/j.bbadis.2014.06.010.
    1. Association Diabetic Association. Diagnosis and classification of diabetes mellitus-position statement. Diabetes Care . 2012;35(1):S64–S71. doi: 10.2337/dc18-S002.
    1. Batisse-Lignier M., Rieu I., Guillet C., et al. Deep brain stimulation of the subthalamic nucleus regulates postabsorptive glucose metabolism in patients with Parkinson’s disease. The Journal of Clinical Endocrinology & Metabolism . 2013;98(6):E1050–E1054. doi: 10.1210/jc.2012-3838.
    1. Rodriguez-Diaz R., Abdulreda M. H., Formoso A. L., et al. Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metabolism . 2011;14(1):45–54. doi: 10.1016/j.cmet.2011.05.008.
    1. Trulson M. E., Himmel C. D. Decreased brain dopamine synthesis rate and increased [3H] spiroperidol binding in streptozotocin-diabetic rats. Journal of Neurochemistry . 1983;40(5):1456–1459. doi: 10.1111/j.1471-4159.1983.tb13590.x.
    1. Thanvi B., Lo N., Robinson T. Levodopa-induced dyskinesia in Parkinson’s disease: clinical features, pathogenesis, prevention and treatment. Postgraduate Medical Journal . 2007;83(980):384–388. doi: 10.1136/pgmj.2006.054759.
    1. Elgnainy A. Investigation of the possible correlation between Idiopathic Parkinson;s disease and Diabetes mellitus in Egyptian elderly patients (A pilot study) Authorea . 2020 doi: 10.22541/au.160071248.87480469/v2. Preprints.

Source: PubMed

3
구독하다