Meropenem Target Attainment and Population Pharmacokinetics in Critically Ill Septic Patients with Preserved or Increased Renal Function

Matthias Gijsen, Omar Elkayal, Pieter Annaert, Ruth Van Daele, Philippe Meersseman, Yves Debaveye, Joost Wauters, Erwin Dreesen, Isabel Spriet, Matthias Gijsen, Omar Elkayal, Pieter Annaert, Ruth Van Daele, Philippe Meersseman, Yves Debaveye, Joost Wauters, Erwin Dreesen, Isabel Spriet

Abstract

Purpose: Critically ill patients with preserved or increased renal function have been shown to be at risk of underexposure to meropenem. Although many meropenem population pharmacokinetic (PK) models have been published, there is no large prospective population PK study with rich sampling focusing on patients most at risk of suboptimal pharmacokinetic/pharmacodynamic (PK/PD) target attainment. Therefore, the aim of the present study was to evaluate PK/PD target attainment and to perform a thorough covariate screening using population PK modelling of meropenem in septic patients with preserved or increased renal function.

Patients and methods: A single-centre prospective observational PK study was performed in the intensive care unit (ICU) of the University Hospitals Leuven. Patients with severe sepsis or septic shock and treated with meropenem in the ICU were screened for inclusion. Patients were excluded if they received renal replacement therapy or had an estimated glomerular filtration rate according to the Chronic Kidney Disease Epidemiology collaboration equation <70 mL/min/1.73m2 on the day of PK sampling. Successful PK/PD target attainment was defined as an unbound meropenem trough concentration above 2 mg/L or 8 mg/L. Population PK modelling was performed with NONMEM7.4.

Results: In total, 58 patients were included, contributing 345 plasma samples over 70 dosing intervals. The 2 mg/L and 8 mg/L targets were successfully attained in 46% and 11% of all dosing intervals, respectively. A two-compartment population PK model with linear elimination and interindividual variability on clearance best described meropenem PK. The estimated creatinine clearance according to the Cockcroft-Gault equation was the only covariate retained during population PK analysis.

Conclusion: This study provided detailed insight into meropenem PK in critically ill patients with preserved or increased renal function. We observed poor PK/PD target attainment, for which renal function was the only significant covariate.

Trial registration: This study is registered at ClinicalTrials.gov (NCT03560557).

Keywords: PK/PD; augmented renal clearance; dose optimization; exposure; intensive care.

Conflict of interest statement

Erwin Dreesen and Isabel Spriet share senior authorship. BioNotus conducted the bioanalysis in support of this study and received financial compensation for this service. Pieter Annaert is co-founder of BioNotus GCV and is a full time employee of KU Leuven. Joost Wauters reports grants, non-financial support from MSD, grants, other from Gilead, grants, other from Pfizer, outside the submitted work. Erwin Dreesen reports grants from Research Foundation—Flanders (FWO), during the conduct of the study; consultancy fee (paid to the University) from Argenx and Janssen, outside the submitted work. The authors report no other conflicts of interest in this work.

© 2022 Gijsen et al.

Figures

Figure 1
Figure 1
Observed unbound meropenem plasma concentrations (mg/L) vs time relative to the start of the infusion (hours). Panel (A) represents the early sampling days, panel (B) represents the late sampling days. The dashed lines represent the 2 mg/L and 8 mg/L PK/PD target. The lines connect different observations within the same patient.
Figure 2
Figure 2
Prediction-corrected visual predictive check of the final model. The observed prediction-corrected meropenem concentrations are represented by circles. The black solid and dashed lines represent median and 2.5th and 97.5th percentile of the prediction-corrected observations, respectively. The shaded areas indicate 95% prediction-intervals of the median and 2.5th and 97.5th percentile of the simulated values.

References

    1. Sakr Y, Jaschinski U, Wittebole X, et al. Sepsis in intensive care unit patients: worldwide data from the intensive care over nations audit. Open Forum Infect Dis. 2018;5(12):ofy313. doi:10.1093/ofid/ofy313
    1. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi:10.1001/jama.2016.0287
    1. Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–377. doi:10.1007/s00134-017-4683-6
    1. Liu VX, Fielding-Singh V, Greene JD, et al. The timing of early antibiotics and hospital mortality in sepsis. Am J Respir Crit Care Med. 2017;196(7):856–863. doi:10.1164/rccm.201609-1848OC
    1. Roberts JA, Paul SK, Akova M, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–1083. doi:10.1093/cid/ciu027
    1. Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37(3):840–851; quiz 859. doi:10.1097/CCM.0b013e3181961bff
    1. Taccone FS, Laterre PF, Dugernier T, et al. Insufficient beta-lactam concentrations in the early phase of severe sepsis and septic shock. Critical Care. 2010;14(4):R126. doi:10.1186/cc9091
    1. Roberts JA, Abdul-Aziz MH, Lipman J, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14(6):498–509. doi:10.1016/S1473-3099(14)70036-2
    1. Guilhaumou R, Benaboud S, Bennis Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Societe Francaise de Pharmacologie et Therapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Societe Francaise d’Anesthesie et Reanimation-SFAR). Critical Care. 2019;23(1):104. doi:10.1186/s13054-019-2378-9
    1. Mattoes HM, Kuti JL, Drusano GL, Nicolau DP. Optimizing antimicrobial pharmacodynamics: dosage strategies for meropenem. Clin Ther. 2004;26(8):1187–1198. doi:10.1016/S0149-2918(04)80001-8
    1. Abdul-Aziz MH, Alffenaar JC, Bassetti M, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper. Intensive Care Med. 2020;46(6):1127–1153. doi:10.1007/s00134-020-06050-1
    1. Ehmann L, Zoller M, Minichmayr IK, et al. Role of renal function in risk assessment of target non-attainment after standard dosing of meropenem in critically ill patients: a prospective observational study. Critical Care. 2017;21(1):263. doi:10.1186/s13054-017-1829-4
    1. Burger R, Guidi M, Calpini V, et al. Effect of renal clearance and continuous renal replacement therapy on appropriateness of recommended meropenem dosing regimens in critically ill patients with susceptible life-threatening infections. J Antimicrob Chemother. 2018;73(12):3413–3422. doi:10.1093/jac/dky370
    1. Tamatsukuri T, Ohbayashi M, Kohyama N, et al. The exploration of population pharmacokinetic model for meropenem in augmented renal clearance and investigation of optimum setting of dose. J Infect Chemother. 2018;24(10):834–840. doi:10.1016/j.jiac.2018.07.007
    1. Petersson J, Giske CG, Eliasson E. Standard dosing of piperacillin and meropenem fail to achieve adequate plasma concentrations in ICU patients. Acta Anaesthesiol Scand. 2016;60(10):1425–1436. doi:10.1111/aas.12808
    1. Drusano GL, Hutchison M. The pharmacokinetics of meropenem. Scand J Infect Dis Suppl. 1995;96:11–16.
    1. Dhaese SAM, Farkas A, Colin P, et al. Population pharmacokinetics and evaluation of the predictive performance of pharmacokinetic models in critically ill patients receiving continuous infusion meropenem: a comparison of eight pharmacokinetic models. J Antimicrob Chemother. 2019;74(2):432–441. doi:10.1093/jac/dky434
    1. Muller AE, Huttner B, Huttner A. Therapeutic drug monitoring of beta-lactams and other antibiotics in the intensive care unit: which agents, which patients and which infections? Drugs. 2018;78(4):439–451. doi:10.1007/s40265-018-0880-z
    1. Tabah A, De Waele J, Lipman J, et al. The ADMIN-ICU survey: a survey on antimicrobial dosing and monitoring in ICUs. J Antimicrob Chemother. 2015;70(9):2671–2677. doi:10.1093/jac/dkv165
    1. Minichmayr IK, Roberts JA, Frey OR, Roehr AC, Kloft C, Brinkmann A. Development of a dosing nomogram for continuous-infusion meropenem in critically ill patients based on a validated population pharmacokinetic model. J Antimicrob Chemother. 2018;73(5):1330–1339. doi:10.1093/jac/dkx526
    1. Idoate Grijalba AI, Aldaz Pastor A, Marquet P, Woillard JB. Evaluation of a non-parametric modelling for meropenem in critically ill patients using Monte Carlo simulation. Eur J Clin Pharmacol. 2019;75(10):1405–1414. doi:10.1007/s00228-019-02716-y
    1. Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228. doi:10.1007/s00134-012-2769-8
    1. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31(4):1250–1256. doi:10.1097/01.CCM.0000050454.01978.3B
    1. Bilbao-Meseguer I, Rodriguez-Gascon A, Barrasa H, Isla A, Solinis MA. Augmented renal clearance in critically ill patients: a systematic review. Clin Pharmacokinet. 2018;57(9):1107–1121. doi:10.1007/s40262-018-0636-7
    1. Gijsen M, Dreesen E, Annaert P, et al. Meropenem pharmacokinetics and target attainment in critically ill patients are not affected by extracorporeal membrane oxygenation: a matched cohort analysis. Microorganisms. 2021;9(6):1310. doi:10.3390/microorganisms9061310
    1. Mortensen JS, Jensen BP, Zhang M, Doogue M. Preanalytical stability of piperacillin, tazobactam, meropenem, and ceftazidime in plasma and whole blood using liquid chromatography-tandem mass spectrometry. Ther Drug Monit. 2019;41(4):538–543. doi:10.1097/FTD.0000000000000650
    1. Colin P, De Bock L, T’Jollyn H, Boussery K, Van Bocxlaer J. Development and validation of a fast and uniform approach to quantify beta-lactam antibiotics in human plasma by solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Talanta. 2013;103:285–293. doi:10.1016/j.talanta.2012.10.046
    1. Gijsen M, Filtjens B, Annaert P, et al. Meropenem stability in human plasma at −20 degrees C: detailed assessment of degradation. Antibiotics. 2021;10(4):449.
    1. European Committee on Antimicrobial Susceptibility Testing. Testing Breakpoint tables for interpretation of MICs and zone diameters; 2020. Accessed on March 24, 2021.
    1. Gijsen M, Huang CY, Flechet M, et al. Development and external validation of an online clinical prediction model for augmented renal clearance in adult mixed critically ill patients: the augmented renal clearance predictor. Crit Care Med. 2020;48(12):e1260–e1268. doi:10.1097/CCM.0000000000004667
    1. Wickham H, Averick M, Bryan J, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4(43):1686. doi:10.21105/joss.01686
    1. Wickham H. Ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.
    1. Goncalves-Pereira J, Silva NE, Mateus A, Pinho C, Povoa P. Assessment of pharmacokinetic changes of meropenem during therapy in septic critically ill patients. BMC Pharmacol Toxicol. 2014;15:21. doi:10.1186/2050-6511-15-21
    1. Mattioli F, Fucile C, Del Bono V, et al. Population pharmacokinetics and probability of target attainment of meropenem in critically ill patients. Eur J Clin Pharmacol. 2016;72(7):839–848. doi:10.1007/s00228-016-2053-x
    1. Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother. 2009;64(1):142–150. doi:10.1093/jac/dkp139
    1. Crandon JL, Ariano RE, Zelenitsky SA, Nicasio AM, Kuti JL, Nicolau DP. Optimization of meropenem dosage in the critically ill population based on renal function. Intensive Care Med. 2011;37(4):632–638. doi:10.1007/s00134-010-2105-0
    1. Sjovall F, Alobaid AS, Wallis SC, Perner A, Lipman J, Roberts JA. Maximally effective dosing regimens of meropenem in patients with septic shock. J Antimicrob Chemother. 2018;73(1):191–198. doi:10.1093/jac/dkx330
    1. Alobaid AS, Wallis SC, Jarrett P, et al. Effect of obesity on the population pharmacokinetics of meropenem in critically ill patients. Antimicrob Agents Chemother. 2016;60(8):4577–4584. doi:10.1128/AAC.00531-16
    1. Tsai D, Stewart P, Goud R, et al. Optimising meropenem dosing in critically ill Australian Indigenous patients with severe sepsis. Int J Antimicrob Agents. 2016;48(5):542–546. doi:10.1016/j.ijantimicag.2016.08.015
    1. Carlier M, Dumoulin A, Janssen A, et al. Comparison of different equations to assess glomerular filtration in critically ill patients. Intensive Care Med. 2015;41(3):427–435. doi:10.1007/s00134-014-3641-9

Source: PubMed

3
구독하다