The interaction between artemether-lumefantrine and lopinavir/ritonavir-based antiretroviral therapy in HIV-1 infected patients

T Kredo, K Mauff, L Workman, J S Van der Walt, L Wiesner, P J Smith, G Maartens, K Cohen, K I Barnes, T Kredo, K Mauff, L Workman, J S Van der Walt, L Wiesner, P J Smith, G Maartens, K Cohen, K I Barnes

Abstract

Background: Artemether-lumefantrine is currently the most widely recommended treatment of uncomplicated malaria. Lopinavir-based antiretroviral therapy is the commonly recommended second-line HIV treatment. Artemether and lumefantrine are metabolised by cytochrome P450 isoenzyme CYP3A4, which lopinavir/ritonavir inhibits, potentially causing clinically important drug-drug interactions.

Methods: An adaptive, parallel-design safety and pharmacokinetic study was conducted in HIV-infected (malaria-negative) patients: antiretroviral-naïve and those stable on lopinavir/ritonavir-based antiretrovirals. Both groups received the recommended six-dose artemether-lumefantrine treatment. The primary outcome was day-7 lumefantrine concentrations, as these correlate with antimalarial efficacy. Adverse events were solicited throughout the study, recording the onset, duration, severity, and relationship to artemether-lumefantrine.

Results: We enrolled 34 patients. Median day-7 lumefantrine concentrations were almost 10-fold higher in the lopinavir than the antiretroviral-naïve group [3170 versus 336 ng/mL; p = 0.0001], with AUC(0-inf) and Cmax increased five-fold [2478 versus 445 μg.h/mL; p = 0.0001], and three-fold [28.2 versus 8.8 μg/mL; p < 0.0001], respectively. Lumefantrine Cmax, and AUC(0-inf) increased significantly with mg/kg dose in the lopinavir, but not the antiretroviral-naïve group. While artemether exposure was similar between groups, Cmax and AUC(0-8h) of its active metabolite dihydroartemisinin were initially two-fold higher in the lopinavir group [p = 0.004 and p = 0.0013, respectively]. However, this difference was no longer apparent after the last artemether-lumefantrine dose. Within 21 days of starting artemether-lumefantrine there were similar numbers of treatment emergent adverse events (42 vs. 35) and adverse reactions (12 vs. 15, p = 0.21) in the lopinavir and antiretroviral-naïve groups, respectively. There were no serious adverse events and no difference in electrocardiographic QTcF- and PR-intervals, at the predicted lumefantrine Tmax.

Conclusion: Despite substantially higher lumefantrine exposure, intensive monitoring in our relatively small study raised no safety concerns in HIV-infected patients stable on lopinavir-based antiretroviral therapy given the recommended artemether-lumefantrine dosage. Increased day-7 lumefantrine concentrations have been shown previously to reduce the risk of malaria treatment failure, but further evidence in adult patients co-infected with malaria and HIV is needed to assess the artemether-lumefantrine risk : benefit profile in this vulnerable population fully. Our antiretroviral-naïve patients confirmed previous findings that lumefantrine absorption is almost saturated at currently recommended doses, but this dose-limited absorption was overcome in the lopinavir group.

Trial registration: Clinical Trial Registration number NCT00869700. Registered on clinicaltrials.gov 25 March 2009.

Figures

Fig. 1
Fig. 1
Scatter plot of Plasma lumefantrine concentrations over time, by study group
Fig. 2
Fig. 2
Scatter plot showing the effect of mg/kg lumefantrine dose (given twice daily for three days) on a lumefantrine maximum concentration (upper panel) and b lumefantrine area under the concentration time curve (AUC(0-inf)) (lower panel), by treatment group
Fig. 3
Fig. 3
Scatter plot of Plasma artemether (ART) and dihydroartemisinin (DHA) concentrations over time, by study group and treatment period (after dose 1 (0–8 hours), and after dose 6 (60–68 hours))
Fig. 4
Fig. 4
Box plot of area under the plasma artemether (ART, upper panel) and dihydroartemisinin (DHA, lower panel) concentration time curves (0-infinity) ng.h/mL after artemether-lumefantrine dose 1 (0–8 hours) and dose 6 (60–68 hours), by study group

References

    1. World Health Organization. World Malaria Report 2014. Switzerland: World Health Organization. [Available from: ].
    1. White NJ, Stepniewska K, Barnes K, Price RN, Simpson J. Simplified antimalarial therapeutic monitoring: using the day-7 drug level? Trends Parasitol. 2008;24(4):159–63. doi: 10.1016/j.pt.2008.01.006.
    1. Barnes KI, Lindegardh N, Ogundahunsi O, Olliaro P, Plowe CV, Randrianarivelojosia M, et al. World Antimalarial Resistance Network (WARN) IV: clinical pharmacology. Malar J. 2007;6:122. doi: 10.1186/1475-2875-6-122.
    1. White NJ, van Vugt M, Ezzet F. Clinical pharmacokinetics and pharmacodynamics and pharmacodynamics of artemether-lumefantrine. Clin Pharmacokinet. 1999;37(2):105–25. doi: 10.2165/00003088-199937020-00002.
    1. Ezzet F, van Vugt M, Nosten F, Looareesuwan S, White NJ. Pharmacokinetics and pharmacodynamics of lumefantrine (benflumetol) in acute falciparum malaria. Antimicrob Agents Chemother. 2000;44(3):697–704. doi: 10.1128/AAC.44.3.697-704.2000.
    1. McGready R, Tan SO, Ashley EA, Pimanpanarak M, Viladpai-Nguen J, Phaiphun L, et al. A randomised controlled trial of artemether-lumefantrine versus artesunate for uncomplicated plasmodium falciparum treatment in pregnancy. PLoS Med. 2008;5(12):e253. doi: 10.1371/journal.pmed.0050253.
    1. Checchi F, Piola P, Fogg C, Bajunirwe F, Biraro S, Grandesso F, et al. Supervised versus unsupervised antimalarial treatment with six-dose artemether-lumefantrine: pharmacokinetic and dosage-related findings from a clinical trial in Uganda. Malar J. 2006;5:59. doi: 10.1186/1475-2875-5-59.
    1. Rahman MM, Dondorp AM, Day NP, Lindegardh N, Imwong M, Faiz MA, et al. Adherence and efficacy of supervised versus non-supervised treatment with artemether/lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Bangladesh: a randomised controlled trial. Trans R Soc Trop Med Hyg. 2008;102(9):861–7. doi: 10.1016/j.trstmh.2008.05.022.
    1. Price RN, Uhlemann AC, van Vugt M, Brockman A, Hutagalung R, Nair S, et al. Molecular and pharmacological determinants of the therapeutic response to artemether-lumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clin Infect Dis. 2006;42(11):1570–7. doi: 10.1086/503423.
    1. Denis MB, Tsuyuoka R, Lim P, Lindegardh N, Yi P, Top SN, et al. Efficacy of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in northwest Cambodia. Trop Med Int Health. 2006;11(12):1800–7. doi: 10.1111/j.1365-3156.2006.01739.x.
    1. WorldWide Antimalarial Resistance Network (WWARN) Lumefantrine PK/PD Study Group Artemether-lumefantrine treatment of uncomplicated Plasmodium falciparum malaria: a systematic review and meta-analysis of day 7 lumefantrine concentrations and therapeutic response using individual patient data. BMC Med. 2015;13(1):227. doi: 10.1186/s12916-015-0456-7.
    1. World Health Organization. Guidelines for the treatment of malaria. Switzerland: World Health Organization. 2015. 3rd edition: [Available from: ]
    1. Oldfield V, Plosker GL. Lopinavir/Ritonavir: a review of its use in the management of HIV infection. Drugs. 2006;66(9):1275–99. doi: 10.2165/00003495-200666090-00012.
    1. Khoo S, Back D, Winstanley P. The potential for interactions between antimalarial and antiretroviral drugs. AIDS. 2005;19(10):995–1005. doi: 10.1097/01.aids.0000174445.40379.e0.
    1. Flateau C, Le Loup G, Pialoux G. Consequences of HIV infection on malaria and therapeutic implications: a systematic review. Lancet Infect Dis. 2011;11(7):541–56. doi: 10.1016/S1473-3099(11)70031-7.
    1. Kredo T, Mauff K, Van der Walt JS, Wiesner L, Maartens G, Cohen K, et al. Interaction between artemether-lumefantrine and nevirapine-based antiretroviral therapy in HIV-1-infected patients. Antimicrob Agents Chemother. 2011;55(12):5616–23. doi: 10.1128/AAC.05265-11.
    1. South African National Department of Health . National antiretroviral treatment guidelines. 1. Pretoria Jacana: Department of Health SA; 2004.
    1. Lefevre G, Carpenter P, Souppart C, Schmidli H, Martin JM, Lane A, et al. Interaction trial between artemether-lumefantrine (Riamet) and quinine in healthy subjects. J Clin Pharmacol. 2002;42(10):1147–58. doi: 10.1177/009127002401382632.
    1. Lefevre G, Carpenter P, Souppart C, Schmidli H, McClean M, Stypinski D. Pharmacokinetics and electrocardiographic pharmacodynamics of artemether-lumefantrine (Riamet) with concomitant administration of ketoconazole in healthy subjects. Br J Clin Pharmacol. 2002;54(5):485–92. doi: 10.1046/j.1365-2125.2002.01696.x.
    1. Goldenberg I, Moss AJ, Zareba W. QT interval: how to measure it and what is “normal”. J Cardiovasc Electrophysiol. 2006;17(3):333–6. doi: 10.1111/j.1540-8167.2006.00408.x.
    1. Allen EN, Chandler CI, Mandimika N, Pace C, Mehta U, Barnes KI. Evaluating harm associated with anti-malarial drugs: a survey of methods used by clinical researchers to elicit, assess and record participant-reported adverse events and related data. Malar J. 2013;12:325. doi: 10.1186/1475-2875-12-325.
    1. Allen EN, Mushi AK, Massawe IS, Vestergaard LS, Lemnge M, Staedke SG, et al. How experiences become data: the process of eliciting adverse event, medical history and concomitant medication reports in antimalarial and antiretroviral interaction trials. BMC Med Res Methodol. 2013;13(1):140. doi: 10.1186/1471-2288-13-140.
    1. van Vugt M, Ezzet F, Nosten F, Gathmann I, Wilairatana P, Looareesuwan S, et al. No evidence of cardiotoxicity during antimalarial treatment with artemether-lumefantrine. Am J Trop Med Hyg. 1999;61(6):964–7.
    1. Byakika-Kibwika P, Lamorde M, Lwabi P, Nyakoojo WB, Okaba-Kayom V, Mayanja-Kizza H, et al. Cardiac conduction safety during Coadministration of Artemether-lumefantrine and Lopinavir/Ritonavir in HIV-infected Ugandan adults. Chemother Res Pract. 2011;2011:393976.
    1. Byakika-Kibwika P, Lamorde M, Okaba-Kayom V, Mayanja-Kizza H, Katabira E, Hanpithakpong W, et al. Lopinavir/ritonavir significantly influences pharmacokinetic exposure of artemether/lumefantrine in HIV-infected Ugandan adults. J Antimicrob Chemother. 2012;67(5):1217–23. doi: 10.1093/jac/dkr596.
    1. van Agtmael MA, Cheng-Qi S, Qing JX, Mull R, van Boxtel CJ. Multiple dose pharmacokinetics of artemether in Chinese patients with uncomplicated falciparum malaria. Int J Antimicrob Agents. 1999;12(2):151–8. doi: 10.1016/S0924-8579(99)00063-1.
    1. van Agtmael MA, Gupta V, van der Graaf CAA, van Boxtel CJ. The effect of grapefruit juice on the time-dependent decline of artemether plasma levels in healthy subjects[ast] Clin Pharmacol Ther. 1999;66(4):408–14. doi: 10.1053/cp.1999.v66.a101946.
    1. Svensson US, Alin H, Karlsson MO, Bergqvist Y, Ashton M. Population pharmacokinetic and pharmacodynamic modelling of artemisinin and mefloquine enantiomers in patients with falciparum malaria. Eur J Clin Pharmacol. 2002;58(5):339–51. doi: 10.1007/s00228-002-0485-y.
    1. German P, Parikh S, Lawrence J, Dorsey G, Rosenthal PJ, Havlir D, et al. Lopinavir/ritonavir affects pharmacokinetic exposure of artemether/lumefantrine in HIV-uninfected healthy volunteers. J Acquir Immune Defic Syndr. 2009;51(4):424–9. doi: 10.1097/QAI.0b013e3181acb4ff.
    1. Hoglund RM, Byakika-Kibwika P, Lamorde M, Merry C, Ashton M, Hanpithakpong W, et al. Artemether-lumefantrine co-administration with antiretrovirals: population pharmacokinetics and dosing implications. Br J Clin Pharmacol. 2015;79(4):636–49. doi: 10.1111/bcp.12529.
    1. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371(5):411–23. doi: 10.1056/NEJMoa1314981.
    1. World Health Organization . Emergency response to artemisinin resistance in the Greater Mekong subregion. Regional Framework for Action 2013–2015. 2013.
    1. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15(4):415–21. doi: 10.1016/S1473-3099(15)70032-0.
    1. Mwesigwa J, Parikh S, McGee B, German P, Drysdale T, Kalyango JN, et al. Pharmacokinetics of artemether-lumefantrine and artesunate-amodiaquine in children in Kampala, Uganda. Antimicrob Agents Chemother. 2010;54(1):52–9. doi: 10.1128/AAC.00679-09.
    1. Achan J, Kakuru A, Ikilezi G, Ruel T, Clark TD, Nsanzabana C, et al. Antiretroviral agents and prevention of malaria in HIV-infected Ugandan children. N Engl J Med. 2012;367(22):2110–8. doi: 10.1056/NEJMoa1200501.
    1. Kakuru A, Achan J, Muhindo MK, Ikilezi G, Arinaitwe E, Mwangwa F, et al. Artemisinin-based combination therapies are efficacious and safe for treatment of uncomplicated malaria in HIV-infected Ugandan children. Clin Infect Dis. 2014;59(3):446–53. doi: 10.1093/cid/ciu286.
    1. Ashley EA, Stepniewska K, Lindegardh N, McGready R, Annerberg A, Hutagalung R, et al. Pharmacokinetic study of artemether-lumefantrine given once daily for the treatment of uncomplicated multidrug-resistant falciparum malaria. Trop Med Int Health. 2007;12(2):201–8. doi: 10.1111/j.1365-3156.2006.01785.x.

Source: PubMed

3
구독하다