Population Pharmacokinetics of Antimalarial Naphthoquine in Combination with Artemisinin in Tanzanian Children and Adults: Dose Optimization

Ali Mohamed Ali, Kamunkhwala Gausi, Said A Jongo, Kamaka R Kassim, Catherine Mkindi, Beatus Simon, Ali T Mtoro, Omar A Juma, Omar N Lweno, Conrad H Gwandu, Bakari M Bakari, Thabiti A Mbaga, Florence A Milando, Ali Hamad, Seif A Shekalaghe, Salim Abdulla, Paolo Denti, Melissa A Penny, Ali Mohamed Ali, Kamunkhwala Gausi, Said A Jongo, Kamaka R Kassim, Catherine Mkindi, Beatus Simon, Ali T Mtoro, Omar A Juma, Omar N Lweno, Conrad H Gwandu, Bakari M Bakari, Thabiti A Mbaga, Florence A Milando, Ali Hamad, Seif A Shekalaghe, Salim Abdulla, Paolo Denti, Melissa A Penny

Abstract

The combination antimalarial therapy of artemisinin-naphthoquine (ART-NQ) was developed as a single-dose therapy, aiming to improve adherence relative to the multiday schedules of other artemisinin combination therapies. The pharmacokinetics of ART-NQ has not been well characterized, especially in children. A pharmacokinetic study was conducted in adults and children over 5 years of age (6 to 10, 11 to 17, and ≥18 years of age) with uncomplicated malaria in Tanzania. The median weights for the three age groups were 20, 37.5, and 55 kg, respectively. Twenty-nine patients received single doses of 20 mg/kg of body weight for artemisinin and 8 mg/kg for naphthoquine, and plasma drug concentrations were assessed at 13 time points over 42 days from treatment. We used nonlinear mixed-effects modeling to interpret the data, and allometric scaling was employed to adjust for the effect of body size. The pharmacokinetics of artemisinin was best described by one-compartment model and that of naphthoquine by a two-compartment disposition model. Clearance values for a typical patient (55-kg body weight and 44.3-kg fat-free mass) were estimated as 66.7 L/h (95% confidence interval [CI], 57.3 to 78.5 L/h) for artemisinin and 44.2 L/h (95% CI, 37.9 to 50.6 L/h) for naphthoquine. Nevertheless, we show via simulation that patients weighing ≥70 kg achieve on average a 30% lower day 7 concentration compared to a 48-kg reference patient at the doses tested, suggesting dose increases may be warranted to ensure adequate exposure. (This study has been registered at ClinicalTrials.gov under identifier NCT01930331.).

Keywords: dose optimization; malaria; population pharmacokinetics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

FIG 1
FIG 1
Structural presentation of the final model describing population pharmacokinetics for artemisinin and naphthoquine in Tanzanian malaria patients. F, oral bioavailability; Ktr, first-order transit rate constant; Ka, absorption rate constant; CL, clearance; Vc, central volume of distribution; Q, intercompartmental clearances; Vp, peripheral volumes of distribution. *, peripheral compartments apply only to naphthoquine.
FIG 2
FIG 2
Visual predictive check of the final model describing the plasma concentration of artemisinin versus time in uncomplicated malaria patients from Tanzania. Open circles are the observed data points, solid and dashed lines are the 50th, 5th, and 95th percentiles of the observed data, and shaded areas are the simulated (n = 1,000) 95% confidence intervals for the same percentiles.
FIG 3
FIG 3
Visual predictive check of the final model describing the plasma concentrations of naphthoquine versus time in uncomplicated malaria patients from Tanzania. Open circles are the observed data points, solid and dashed lines are the 50th, 5th, and 95th percentiles of the observed data, and shaded areas are the simulated (n = 1,000) 95% confidence interval for the same percentile.
FIG 4
FIG 4
Simulation results of day 7 plasma naphthoquine concentration (A) and maximum concentration of naphthoquine (B). Results from the current recommended dose are in coral, and those from the optimized dose regimen are in blue. The purple line in panel A is the median, the dashed lines are the 5th and 95th percentiles of the simulated efficacy target, respectively, and the red line in panel B represents the target Cmax (156 ng/mL). Simulations of weight are presented as a distribution plot: the median is represented by the black line, the thick shading represents the 25th and 75th percentiles, and the lighter shading represents the 5th and 95th percentiles.

References

    1. Leang R, Barrette A, Bouth DM, Menard D, Abdur R, Duong S, Ringwald P. 2013. Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010. Antimicrob Agents Chemother 57:818–826. 10.1128/AAC.00686-12.
    1. Ménard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, Rahim-Awab G, Barnadas C, Berry A, Boum Y, Bustos MD, Cao J, Chen J-H, Collet L, Cui L, Thakur G-D, Dieye A, Djallé D, Dorkenoo MA, Eboumbou-Moukoko CE, Espino F-E-CJ, Fandeur T, Ferreira-da-Cruz M-F, Fola AA, Fuehrer H-P, Hassan AM, Herrera S, Hongvanthong B, Houzé S, Ibrahim ML, Jahirul-Karim M, Jiang L, Kano S, Ali-Khan W, Khanthavong M, Kremsner PG, Lacerda M, Leang R, Leelawong M, Li M, Lin K, Mazarati J-B, Ménard S, Morlais I, Muhindo-Mavoko H, Musset L, Na-Bangchang K, Nambozi M, Niaré K, Noedl H, et al. . 2016. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 374:2453–2464. 10.1056/NEJMoa1513137.
    1. Leang R, Taylor WRJ, Bouth DM, Song L, Tarning J, Char MC, Kim S, Witkowski B, Duru V, Domergue A, Khim N, Ringwald P, Menard D. 2015. Evidence of Plasmodium falciparum malaria multidrug resistance to artemisinin and piperaquine in western Cambodia: dihydroartemisinin-piperaquine open-label multicenter clinical assessment. Antimicrob Agents Chemother 59:4719–4726. 10.1128/AAC.00835-15.
    1. Na-Bangchang K, Ruengweerayut R, Mahamad P, Ruengweerayut K, Chaijaroenkul W. 2010. Declining in efficacy of a three-day combination regimen of mefloquine-artesunate in a multi-drug resistance area along the Thai-Myanmar border. Malar J 9:273. 10.1186/1475-2875-9-273.
    1. Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, Smithuis FM, Hlaing TM, Tun KM, van der Pluijm RW, Tripura R, Miotto O, Menard D, Dhorda M, Day NPJ, White NJ, Dondorp AM. 2017. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect Dis 17:491–497. 10.1016/S1473-3099(17)30048-8.
    1. Lu F, Culleton R, Zhang M, Ramaprasad A, von Seidlein L, Zhou H, Zhu G, Tang J, Liu Y, Wang W, Cao Y, Xu S, Gu Y, Li J, Zhang C, Gao Q, Menard D, Pain A, Yang H, Zhang Q, Cao J. 2017. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. N Engl J Med 376:991–993. 10.1056/NEJMc1612765.
    1. Kachur SP, Khatib RA, Kaizer E, Fox SS, Abdulla SM, Bloland PB. 2004. Adherence to antimalarial combination therapy with sulfadoxine-pyrimethamine and artesunate in rural Tanzania. Am J Trop Med Hyg 71:715–722. 10.4269/ajtmh.2004.71.715.
    1. Fogg C, Bajunirwe F, Piola P, Biraro S, Checchi F, Kiguli J, Namiiro P, Musabe J, Kyomugisha A, Guthmann JP. 2004. Adherence to a six-dose regimen of artemether-lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Uganda. Am J Trop Med Hyg 71:525–530. 10.4269/ajtmh.2004.71.525.
    1. Depoortere E, Salvador ETC, Stivanello E, Bisoffi Z, Guthmann J-P. 2004. Adherence to a combination of artemether and lumefantrine (Coartem) in Kajo Keji, southern Sudan. Ann Trop Med Parasitol 98:635–637. 10.1179/000349804225021271.
    1. Depoortere E, Guthmann J-P, Sipilanyambe N, Nkandu E, Fermon F, Balkan S, Legros D. 2004. Adherence to the combination of sulphadoxine-pyrimethamine and artesunate in the Maheba refugee settlement, Zambia. Trop Med Int Health 9:62–67. 10.1046/j.1365-3156.2003.01157.x.
    1. Tun T, Tint HS, Lin K, Kyaw TT, Myint MK, Khaing W, Tun ZW. 2009. Efficacy of oral single dose therapy with artemisinin-naphthoquine phosphate in uncomplicated falciparum malaria. Acta Trop 111:275–278. 10.1016/j.actatropica.2009.05.007.
    1. Benjamin J, Moore B, Lee ST, Senn M, Griffin S, Lautu D, Salman S, Siba P, Mueller I, Davis TME. 2012. Artemisinin-naphthoquine combination therapy for uncomplicated pediatric malaria: a tolerability, safety, and preliminary efficacy study. Antimicrob Agents Chemother 56:2465–2471. 10.1128/AAC.06248-11.
    1. Meremikwu MM, Odey F, Oringanje C, Oyo-Ita A, Effa E, Esu EB, Eyam E, Oduwole O, Asiegbu V, Alaribe A, Ezedinachi EN. 2012. Open-label trial of three dosage regimens of fixed-dose combination of artemisinin and naphthoquine for treating uncomplicated falciparum malaria in Calabar, Nigeria. Malar J 11:413. 10.1186/1475-2875-11-413.
    1. Batty KT, Salman S, Moore BR, Benjamin J, Lee ST, Page-Sharp M, Pitus N, Ilett KF, Mueller I, Hombhanje FW, Siba P, Davis TME. 2012. Artemisinin-naphthoquine combination therapy for uncomplicated pediatric malaria: a pharmacokinetic study. Antimicrob Agents Chemother 56:2472–2484. 10.1128/AAC.06250-11.
    1. Galarneau JR, Meseck EK, Hall RL, Li W, Weaver ML. 2016. Naphthoquine-induced central nervous system and hepatic vasculocentric toxicity in the beagle dog. Toxicol Pathol 44:1128–1136. 10.1177/0192623316676422.
    1. Burrows JN, Hooft van Huijsduijnen R, Möhrle JJ, Oeuvray C, Wells TN. 2013. Designing the next generation of medicines for malaria control and eradication. Malar J 12:187. 10.1186/1475-2875-12-187.
    1. Linares M, Viera S, Crespo B, Franco V, Gómez-Lorenzo MG, Jiménez-Díaz MB, Angulo-Barturen Í, Sanz LM, Gamo F-J. 2015. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J 14:441. 10.1186/s12936-015-0962-2.
    1. Duc DD, de Vries PJ, Nguyen XK, Le Nguyen B, Kager PA, van Boxtel CJ. 1994. The pharmacokinetics of a single dose of artemisinin in healthy Vietnamese subjects. Am J Trop Med Hyg 51:785–790. 10.4269/ajtmh.1994.51.785.
    1. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Ménard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, Le Bras J, Berry A, Barale J-C, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Ménard D. 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505:50–55. 10.1038/nature12876.
    1. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han K-T, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, et al. . 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371:411–423. 10.1056/NEJMoa1314981.
    1. Wang J, Cao W, Shan C, Zhang M, Li G, Ding D, Shi Y, Wu B. 2004. Naphthoquine phosphate and its combination with artemisinine. Acta Trop 89:375–381. 10.1016/j.actatropica.2003.11.008.
    1. Titulaer HA, Zuidema J, Kager P, Wetsteyn JCF, Lugt C, Merkus FWH. 1990. The pharmacokinetics of artemisinin after oral, intramuscular and rectal administration to volunteers. J Pharm Pharmacol 42:810–813.
    1. Svensson USH, Ashton M. 1999. Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin. Br J Clin Pharmacol 48:528–535. 10.1046/j.1365-2125.1999.00044.x.
    1. Lee I-S, Hufford CD. 1990. Metabolism of antimalarial sesquiterpene lactones. Pharmacol Ther 48:345–355. 10.1016/0163-7258(90)90053-5.
    1. Li W, Shu H, Xu G, Zeng Y. 1982. The binding of qinghaosu (artemisinine) and its derivatives to plasma protein. Acta Pharmacol Sin 17:783–786.
    1. Dien TK, De Vries PJ, Khanh NX, Koopmans R, Binh LN, Duc DD, Kager PA, Van Boxtel CJ. 1997. Effect of food intake on pharmacokinetics of oral artemisinin in healthy Vietnamese subjects. Antimicrob Agents Chemother 41:1069–1072. 10.1128/AAC.41.5.1069.
    1. Guo WZ, Zheng Q, Li G, Guo XB. 2003. A randomized controlled study of napthoquine and artesunate in the treatment of falciparum malaria. J Guangzhou Univ Tradit Chinese Med 17:235–7.
    1. Hombhanje FW, Huang Q. 2010. Artemisinin-naphthoquine combination (ARCO): an overview of the progress. Pharmaceuticals 3:3581–3593. 10.3390/ph3123581.
    1. Nosten F, White NJ. 2007. Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg 77:181–192. 10.4269/ajtmh.2007.77.181.
    1. Barnes K, Little F, Smith P, Evans A, Watkins W, White N. 2006. Sulfadoxine-pyrimethamine pharmacokinetics in malaria: pediatric dosing implications. Clin Pharmacol Ther 80:582–596. 10.1016/j.clpt.2006.08.016.
    1. WorldWide Antimalarial Resistance Network (WWARN) DP Study Group. 2013. The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: a pooled analysis of individual patient data. PLoS Med 10:e1001564. 10.1371/journal.pmed.1001564.
    1. Salman S, Griffin S, Kose K, Pitus N, Winmai J, Moore B, Siba P, Ilett KF, Mueller I, Davis TME. 2011. Pharmacokinetic properties of conventional and double-dose sulfadoxine-pyrimethamine given as intermittent preventive treatment in infancy. Antimicrob Agents Chemother 55:1693–1700. 10.1128/AAC.01075-10.
    1. Hendriksen I, Mtove G, Kent A, Gesase S, Reyburn H, Lemnge MM, Lindegardh N, Day NPJ, von Seidlein L, White NJ, Dondorp AM, Tarning J. 2013. Population pharmacokinetics of intramuscular artesunate in African children with severe malaria: implications for a practical dosing regimen. Clin Pharmacol Ther 93:443–450. 10.1038/clpt.2013.26.
    1. Bergstrand M, Nosten F, Lwin KM, Karlsson MO, White NJ, Tarning J. 2014. Characterization of an in vivo concentration-effect relationship for piperaquine in malaria chemoprevention. Sci Transl Med 6:260ra147. 10.1126/scitranslmed.3005311.
    1. Barnes KI, Watkins WM, White NJ. 2008. Antimalarial dosing regimens and drug resistance. Trends Parasitol 24:127–134. 10.1016/j.pt.2007.11.008.
    1. Tarning J, Zongo I, Somé FA, Rouamba N, Parikh S, Rosenthal PJ, Hanpithakpong W, Jongrak N, Day NPJ, White NJ, Nosten F, Ouedraogo J-B, Lindegardh N. 2012. Population pharmacokinetics and pharmacodynamics of piperaquine in children with uncomplicated falciparum malaria. Clin Pharmacol Ther 91:497–505. 10.1038/clpt.2011.254.
    1. Birgersson S, Van Toi P, Truong NT, Dung NT, Ashton M, Hien TT, Abelö A, Tarning J. 2016. Population pharmacokinetic properties of artemisinin in healthy male Vietnamese volunteers. Malar J 15:90. 10.1186/s12936-016-1134-8.
    1. Sidhu JS, Ashton M, Huong NV, Hai TN, Karlsson MO, Sy ND, Jonsson EN, Cong LD. 1998. Artemisinin population pharmacokinetics in children and adults with uncomplicated falciparum malaria. Br J Clin Pharmacol 45:347–354. 10.1046/j.1365-2125.1998.t01-1-00686.x.
    1. Gordi T, Xie R, Huong NV, Huong DX, Karlsson MO, Ashton M. 2005. A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction. Br J Clin Pharmacol 59:189–198. 10.1111/j.1365-2125.2004.02321.x.
    1. Gordi T, Xie R, Jusko WJ. 2005. Semi-mechanistic pharmacokinetic/pharmacodynamic modelling of the antimalarial effect of artemisinin. Br J Clin Pharmacol 60:594–604. 10.1111/j.1365-2125.2005.02508.x.
    1. Ashton M, Gordi T, Hai TN, Van Huong N, Sy ND, Nieu NT, Huong DX, Johansson M, Công LD. 1998. Artemisinin pharmacokinetics in healthy adults after 250, 500 and 1000 mg single oral doses. Biopharm Drug Dispos 19:245–250. 10.1002/(SICI)1099-081X(199805)19:4<245::AID-BDD99>;2-Z.
    1. Hassan Alin M, Ashton M, Kihamia CM, Mtey GJB, Björkman A. 1996. Multiple dose pharmacokinetics of oral artemisinin and comparison of its efficacy with that of oral artesunate in falciparum malaria patients. Trans R Soc Trop Med Hyg 90:61–65. 10.1016/S0035-9203(96)90480-0.
    1. Simonsson U. 2003. Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Clin Pharmacol Ther 74:32–43. 10.1016/S0009-9236(03)00092-4.
    1. Ashton M, Sy ND, Van Huong N, Gordi T, Hai TN, Huong DX, Niêu NT, Công LD. 1998. Artemisinin kinetics and dynamics during oral and rectal treatment of uncomplicated malaria. Clin Pharmacol Ther 63:482–493. 10.1016/S0009-9236(98)90044-3.
    1. Frisk-Holmberg M, Bergqvist Y, Termond E, Domeij-Nyberg B. 1984. The single dose kinetics of chloroquine and its major metabolite desethylchloroquine in healthy subjects. Eur J Clin Pharmacol 26:521–530. 10.1007/BF00542151.
    1. Gustafsson L, Walker O, Alvan G, Beermann B, Estevez F, Gleisner L, Lindstrom B, Sjoqvist F. 1983. Disposition of chloroquine in man after single intravenous and oral doses. Br J Clin Pharmacol 15:471–479. 10.1111/j.1365-2125.1983.tb01532.x.
    1. Wetsteyn J, Vries P, Oosterhuis B, Boxtel C. 1995. The pharmacokinetics of three multiple dose regimens of chloroquine: implications for malaria chemoprophylaxis. Br J Clin Pharmacol 39:696–699. 10.1111/j.1365-2125.1995.tb05731.x.
    1. Moore BR, Benjamin JM, Salman S, Griffin S, Ginny E, Page-Sharp M, Robinson LJ, Siba P, Batty KT, Mueller I, Davis TME. 2014. Effect of coadministered fat on the tolerability, safety, and pharmacokinetic properties of dihydroartemisinin-piperaquine in Papua New Guinean children with uncomplicated malaria. Antimicrob Agents Chemother 58:5784–5794. 10.1128/AAC.03314-14.
    1. Ali AM, Penny MA, Smith TA, Workman L, Sasi P, Adjei GO, Aweeka F, Kiechel J-R, Jullien V, Rijken MJ, McGready R, Mwesigwa J, Kristensen K, Stepniewska K, Tarning J, Barnes KI, Denti P, Massougbodji A, Gansané A, Adeothy A, Aubouy A, Ouedraogo A, Annerberg A, Bruneel A, Phyo AP, Win AK, Benakis A, Goka BQ, Gourmel B, Ogutu B, Schramm B, McGee B, Morgan CC, Obonyo C, Mazinda CS, Parzy D, Ashley EA, Baudin E, Juma E, Comte E, Ouedraogo EB, Nosten F, Sugnaux F, Cottrell G, Dorsey G, Carn G, Kossou H, Amedome H, Kalyango JN, Faucher J-F, et al. . 2018. Population pharmacokinetics of the antimalarial amodiaquine: a pooled analysis to optimize dosing. Antimicrob Agents Chemother 62:e02193-17. 10.1128/AAC.02193-17.
    1. Laman M, Moore BR, Benjamin JM, Yadi G, Bona C, Warrel J, Kattenberg JH, Koleala T, Manning L, Kasian B, Robinson LJ, Sambale N, Lorry L, Karl S, Davis WA, Rosanas-Urgell A, Mueller I, Siba PM, Betuela I, Davis TME. 2014. Artemisinin-naphthoquine versus artemether-lumefantrine for uncomplicated malaria in Papua New Guinean children: an open-label randomized trial. PLoS Med 11:e1001773. 10.1371/journal.pmed.1001773.
    1. Beal SL, Boeckmann AJ, Sheiner LB. 1992. NONMEM users guide. Part VI. PREDPP guide. NONMEM Project Group, UCSF, San Francisco, CA.
    1. Savic RM, Jonker DM, Kerbusch T, Karlsson MO. 2007. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn 34:711–726. 10.1007/s10928-007-9066-0.
    1. Holford N, Heo Y, Anderson B. 2013. A pharmacokinetic standard for babies and adults. J Pharm Sci 102:2941–2952. 10.1002/jps.23574.
    1. Anderson BJ, Holford NHG. 2008. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332. 10.1146/annurev.pharmtox.48.113006.094708.
    1. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. 2005. Quantification of lean bodyweight. Clin Pharmacokinet 44:1051–1065. 10.2165/00003088-200544100-00004.
    1. Hooker AC, Staatz CE, Karlsson MO. 2007. Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method. Pharm Res 24:2187–2197. 10.1007/s11095-007-9361-x.
    1. Beal SL. 2001. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn 28:481–504. 10.1023/A:1012299115260.
    1. Cockcroft DW, Gault MH. 1976. Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41. 10.1159/000180580.
    1. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL. 2009. New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637. 10.1681/ASN.2008030287.
    1. Bonate PL. 2011. Pharmacokinetic-pharmacodynamic modeling and simulation. Springer US, Boston, MA.
    1. Dosne AG, Bergstrand M, Karlsson MO. 2017. An automated sampling importance resampling procedure for estimating parameter uncertainty. J Pharmacokinet Pharmacodyn 44:509–520. 10.1007/s10928-017-9542-0.
    1. White NJ, Stepniewska K, Barnes K, Price RN, Simpson J. 2008. Simplified antimalarial therapeutic monitoring: using the day-7 drug level? Trends Parasitol 24:159–163. 10.1016/j.pt.2008.01.006.
    1. Kabanywanyi AM, Baiden R, Ali AM, Mahende MK, Ogutu BR, Oduro A, Tinto H, Gyapong M, Sie A, Sevene E, Macete E, Owusu-Agyei S, Adjei A, Compaoré G, Valea I, Osei I, Yawson A, Adjuik M, Akparibo R, Kakolwa MA, Abdulla S, Binka F. 2016. Multi-country evaluation of safety of dihydroartemisinin/piperaquine post-licensure in African public hospitals with electrocardiograms. PLoS One 11:e0164851. 10.1371/journal.pone.0164851.

Source: PubMed

3
구독하다