PhysIOpathology of NEuromuscular function rElated to fatigue in chronic Renal disease in the elderly (PIONEER): study protocol

Antoine Chatrenet, Bruno Beaune, Antioco Fois, Camille Pouliquen, Jean-Michel Audebrand, Massimo Torreggiani, Damien Paris, Sylvain Durand, Giorgina Barbara Piccoli, Antoine Chatrenet, Bruno Beaune, Antioco Fois, Camille Pouliquen, Jean-Michel Audebrand, Massimo Torreggiani, Damien Paris, Sylvain Durand, Giorgina Barbara Piccoli

Abstract

Background: Chronic Kidney Disease (CKD) is associated with reduced muscular strength resulting in profound fatigue. The physiopathology of these changes, their prevalence and evolution are still debated. Moreover, we have little data on elderly CKD patients. The present study protocol aims to 1) quantify the prevalence of low muscle strength (dynapenia) in a cohort of elderly patients with advanced CKD and to 2) characterize their force production coupled with electromyographic features and the symptoms of fatigue compared to a matched control group.

Methods: This is a case-control, prospective, interventional study.

Inclusion criteria: age ≥ 60 years; CKD Stage 3b-5; clinical stability (i.e. no hospitalization and ≤ 25% in creatinine increase in the previous 3 months). Controls with normal kidney function will be matched in terms of age, gender and diabetes mellitus (requisite: estimated glomerular filtration rate ≥ 60 ml/min/1.73m2 available in the last 6 months). Exclusion criteria for cases and controls: neuromuscular disease, life expectancy < 3 months. The handgrip strength protocol is an intermittent test consisting in 6 series of 9 repetitions of 3-s sub-maximum contractions at 40% of the maximum voluntary contraction (MVC) and 2 s of resting time between contractions. Each series is separated by one fast sub-maximum contraction and one MVC. Strength is assessed with a high-frequency handgrip dynamometer paired with surface electromyography. Symptoms of fatigue are assessed using MFI-20 and FACIT-F questionnaires. In order to reach a statistical power of 96%, we plan to enroll 110 subjects in each group.

Discussion: The novelty of this study resides in the application of an already validated set of tests in a population in which this combination (dynamometer, electromyography and questionnaires) has not previously been explored. We expect a high prevalence of dynapenia and a higher fatigability in CKD patients. A positive correlation is expected between reported fatigue and fatigability. Better appreciation of the prevalence and the relationship between fatigability and a sensation of fatigue can help us target interventions in CKD patients to improve quality of life and survival.

Trial registration: The study was approved by Ethical Committee EST III n°20.03.01 and was recorded as a Clinical Trial (NCT04330807) on April 2, 2020.

Keywords: Electromyographic features; Muscle fatigue; Pre-dialysis; Tiredness.

Conflict of interest statement

The authors declare that there are no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart of the study. INC: inclusion criteria; EXC: exclusion criteria
Fig. 2
Fig. 2
Fatigability protocol with handgrip and EMG acquisition. a Neuromuscular fatigability protocol: the green box represents the warm-up period, lasting a maximum of 1.5 min; the orange arrows are FSC; the blue lines are MVC and the purple lines are contractions at 40% of MVC. The red points represent the maximal forces awaited allowing critical force determination, while the evolution is represented with a red spotted line. Rest duration is 20 s (*), 2 min (nos. 1 and 2), 5 min (no. 3), 1 min (no. 4), 2 min (no. 5) and 3 min (no. 6). b Parallels between the 40% MVC contractions required and the muscle activation signals recorded. FSC: fast sub-maximum contraction; MVC: maximum voluntary contraction
Fig. 3
Fig. 3
Set-up of the study and standardized position

References

    1. Levey AS, Eckardt K-U, Dorman NM, Christiansen SL, Hoorn EJ, Ingelfinger JR, et al. Nomenclature for kidney function and disease: report of a kidney disease: improving global outcomes (KDIGO) consensus conference. Kidney Int. 2020;97(6):1117–1129.
    1. Chmielewski M, Carrero JJ, Stenvinkel P, Lindholm B. Metabolic abnormalities in chronic kidney disease that contribute t cardiovascular disease, and nutritional initiatives that may diminish the risk. Curr Opin Lipidol. 2009;20:3–9.
    1. Murtagh FEM, Addington-Hall J, Higginson IJ. The prevalence of symptoms in end-stage renal disease: a systematic review. Adv Chronic Kidney Dis. 2007;14:82–99.
    1. Kluger BM, Krupp LB, Enoka RM. Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology. 2013;80:409–416.
    1. Sawant A, Garland SJ, House AA. Overend TJ. Morphological, electrophysiological, and metabolic characteristics of skeletal muscle in people with end-stage renal disease: a critical review. Physiother Can. 2011;63:355–376.
    1. Knorr S, Rice CL, Garland SJ. Perspective on neuromuscular factors in poststroke fatigue. Disabil Rehabil. 2012;34:2291–2299.
    1. Prinsen H, van Dijk JP, Zwarts MJ, Leer JWH, Bleijenberg G, van Laarhoven HWM. The role of central and peripheral muscle fatigue in postcancer fatigue: a randomized controlled trial. J Pain Symptom Manag. 2015;49:173–182.
    1. Yavuzsen T, Davis MP, Ranganathan VK, Walsh D, Siemionow V, Kirkova J, et al. Cancer-related fatigue: central or peripheral? J Pain Symptom Manag. 2009;38:587–596.
    1. Krupp LB, Serafin DJ, Christodoulou C. Multiple sclerosis-associated fatigue. Expert Rev Neurother. 2010;10:1437–1447.
    1. Staud R. Peripheral and central mechanisms of fatigue in inflammatory and noninflammatory rheumatic diseases. Curr Rheumatol Rep. 2012;14:539–548.
    1. Wartolowska K, Hough MG, Jenkinson M, Andersson J, Wordsworth BP, Tracey I. Structural changes of the brain in rheumatoid arthritis. Arthritis Rheumatism. 2012;64:371–379.
    1. Akashi PMH, Sacco ICN, Watari R, Hennig E. The effect of diabetic neuropathy and previous foot ulceration in EMG and ground reaction forces during gait. Clin Biomech (Bristol, Avon) 2008;23:584–592.
    1. Allen MD, Major B, Kimpinski K, Doherty TJ, Rice CL. Skeletal muscle morphology and contractile function in relation to muscle denervation in diabetic neuropathy. J Appl Physiol. 2014;116:545–552.
    1. Goedendorp MM, Tack CJ, Steggink E, Bloot L, Bazelmans E, Knoop H. Chronic fatigue in type 1 diabetes: highly prevalent but not explained by hyperglycemia or glucose variability. Diabetes Care. 2014;37:73–80.
    1. Singh R, Kluding PM. Fatigue and related factors in people with type 2 diabetes. Diabetes Educ. 2013;39:320–326.
    1. Twomey R, Aboodarda SJ, Kruger R, Culos-Reed SN, Temesi J, Millet GY. Neuromuscular fatigue during exercise: methodological considerations, etiology and potential role in chronic fatigue. Neurophysiol Clin. 2017;47:95–110.
    1. Bigland-Ritchie B, Woods JJ. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve. 1984;7:691–699.
    1. McGregor RA, Cameron-Smith D, Poppitt SD. It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev Healthspan. 2014;3:9.
    1. Hirai K, Ookawara S, Morishita Y. Sarcopenia and physical inactivity in patients with chronic kidney disease. Nephrourol Mon. 2016;8:e37443.
    1. O’Sullivan TF, Smith AC, Watson EL. Satellite cell function, intramuscular inflammation and exercise in chronic kidney disease. Clin Kidney J. 2018;11:810–821.
    1. Wilkinson TJ, Gould DW, Nixon DGD, Watson EL, Smith AC. Quality over quantity? Association of skeletal muscle myosteatosis and myofibrosis on physical function in chronic kidney disease. Nephrol Dial Transplant. 2018;34:1344–1354.
    1. Cheema B, Abas H, Smith B, O’Sullivan AJ, Chan M, Patwardhan A, et al. Investigation of skeletal muscle quantity and quality in end-stage renal disease. Nephrology (Carlton) 2010;15:454–463.
    1. Fahal IH, Bell GM, Bone JM, Edwards RH. Physiological abnormalities of skeletal muscle in dialysis patients. Nephrol Dial Transplant. 1997;12:119–127.
    1. Clark BC, Manini TM. What is dynapenia? Nutrition. 2012;28:495–503.
    1. Fouque D, Kalantar-Zadeh K, Kopple J, Cano N, Chauveau P, Cuppari L, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73:391–398.
    1. Johansen KL, Kaysen GA, Young BS, Hung AM, da Silva M, Chertow GM. Longitudinal study of nutritional status, body composition, and physical function in hemodialysis patients. Am J Clin Nutr. 2003;77:842–846.
    1. Raj DSC, Sun Y, Tzamaloukas AH. Hypercatabolism in dialysis patients. Curr Opin Nephrol Hypertens. 2008;17:589–594.
    1. Leal VO, Mafra D, Fouque D, Anjos LA. Use of handgrip strength in the assessment of the muscle function of chronic kidney disease patients on dialysis: a systematic review. Nephrol Dial Transplant. 2011;26:1354–1360.
    1. Fried LF, Lee JS, Shlipak M, Chertow GM, Green C, Ding J, et al. Chronic kidney disease and functional limitation in older people: health, aging and body composition study. J Am Geriatr Soc. 2006;54:750–756.
    1. Gracia-Iguacel C, González-Parra E, Pérez-Gómez MV, Mahíllo I, Egido J, Ortiz A, et al. Prevalence of protein-energy wasting syndrome and its association with mortality in haemodialysis patients in a Centre in Spain. Nefrologia. 2013;33:495–505.
    1. Pagels AA, Söderkvist BK, Medin C, Hylander B, Heiwe S. Health-related quality of life in different stages of chronic kidney disease and at initiation of dialysis treatment. Health Qual Life Outcomes. 2012;10:71.
    1. Pedone C, Corsonello A, Bandinelli S, Pizzarelli F, Ferrucci L, Incalzi RA. Relationship between renal function and functional decline: role of the estimating equation. J Am Med Dir Assoc. 2012;13:84.e11–84.e14.
    1. Workeneh BT, Mitch WE. Review of muscle wasting associated with chronic kidney disease. Am J Clin Nutr. 2010;91:1128S–1132S.
    1. Devrome AN, MacIntosh BR. Force-velocity relationship during isometric and isotonic fatiguing contractions. J Appl Physiol. 2018;125:706–714.
    1. Fois A, Chatrenet A, Cataldo E, Lippi F, Kaniassi A, Vigreux J, et al. Moderate protein restriction in advanced CKD: a feasible option in an elderly, High-Comorbidity Population A Stepwise Multiple-Choice System Approach. Nutrients. 2019;11:36.
    1. Ramírez-Vélez R, Correa-Bautista JE, García-Hermoso A, Cano CA, Izquierdo M. Reference values for handgrip strength and their association with intrinsic capacity domains among older adults. J Cachexia Sarcopenia Muscle. 2019;10:278–286.
    1. Veni T, Boyas S, Beaune B, Bourgeois H, Rahmani A, Landry S, et al. Handgrip fatiguing exercise can provide objective assessment of cancer-related fatigue: a pilot study. Support Care Cancer. 2018;27:229–238.
    1. Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. 2016;48:2320–2334.
    1. Kwakkenbos L, Willems LM, Baron M, Hudson M, Cella D, van den Ende CHM, et al. The comparability of English, French and Dutch scores on the functional assessment of chronic illness therapy-fatigue (FACIT-F): an assessment of differential item functioning in patients with systemic sclerosis. PLoS One. 2014;9:e91979.
    1. Gentile S, Delarozière JC, Favre F, Sambuc R, San Marco JL. Validation of the French “multidimensional fatigue inventory” (MFI 20) Eur J Cancer Care (Engl) 2003;12:58–64.
    1. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–383.
    1. Borges MCC, Vogt BP, Martin LC, Caramori JCT. Malnutrition inflammation score cut-off predicting mortality in maintenance hemodialysis patients. Clin Nutr ESPEN. 2017;17:63–67.
    1. May SE, Keir PJ. Effect of wrist posture, rate of force development/relaxation, and isotonic contractions on finger force independence. J Electromyogr Kinesiol. 2018;38:215–223.
    1. Sanei K, Keir PJ. Independence and control of the fingers depend on direction and contraction mode. Hum Mov Sci. 2013;32:457–471.
    1. Dai C, Hu X. Extracting and classifying spatial muscle activation patterns in forearm flexor muscles using high-density electromyogram recordings. Int J Neural Syst. 2019;29:1850025.
    1. Opplert J, Babault N. Acute effects of dynamic stretching on muscle flexibility and performance: an analysis of the current literature. Sports Med. 2018;48:299–325.
    1. Simic L, Sarabon N, Markovic G. Does pre-exercise static stretching inhibit maximal muscular performance? A meta-analytical review. Scand J Med Sci Sports. 2013;23:131–148.
    1. Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116:1091–1116.
    1. De Luca CJ. The use of surface electromyography in biomechanics. J Appl Biomech. 1997;13:135–163.
    1. Konrad P. A Practical Introduction to Kinesiological Electromyography. 2006. p. 61.
    1. Burnley M, Vanhatalo A, Jones AM. Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans. J Appl Physiol. 2012;113:215–223.
    1. Lin M-Y, Chiu Y-W, Lee C-H, Yu H-Y, Chen H-C, Wu M-T, et al. Factors associated with CKD in the elderly and nonelderly population. Clin J Am Soc Nephrol. 2013;8:33–40.
    1. Almurdhi MM, Reeves ND, Bowling FL, Boulton AJM, Jeziorska M, Malik RA. Reduced lower-limb muscle strength and volume in patients with type 2 diabetes in relation to neuropathy, intramuscular fat, and vitamin D levels. Diabetes Care. 2016;39:441–447.
    1. Orlando G, Balducci S, Bazzucchi I, Pugliese G, Sacchetti M. Neuromuscular dysfunction in type 2 diabetes: underlying mechanisms and effect of resistance training. Diabetes Metab Res Rev. 2016;32:40–50.
    1. Giglio BM, Mota JF, Wall BT, Pimentel GD. Low handgrip strength is not associated with type 2 diabetes mellitus and hyperglycemia: a population-based study. Clin Nutr Res. 2018;7:112–116.

Source: PubMed

3
구독하다