Percutaneous kyphoplasty assisted with/without mixed reality technology in treatment of OVCF with IVC: a prospective study

Peiran Wei, Qingqiang Yao, Yan Xu, Huikang Zhang, Yue Gu, Liming Wang, Peiran Wei, Qingqiang Yao, Yan Xu, Huikang Zhang, Yue Gu, Liming Wang

Abstract

Background: The purpose of this study was to assess the clinical outcome of percutaneous kyphoplasty (PKP) assisted with mixed reality (MR) technology in treatment of osteoporotic vertebral compression fracture (OVCF) with intravertebral vacuum cleft (IVC).

Method: Forty cases of OVCF with IVC undergoing PKP were randomized into a MR technology-assisted group (group A) and a traditional C-arm fluoroscopy group (group B). Both groups were performed PKP and evaluated by VAS scores, ODI scores, radiological evidence of vertebral body height, and kyphotic angle (KA) at pre-operation and post-operation. The volume of injected cement, fluoroscopy times, and operation time were recorded. And cases of non-PMMA-endplates-contact(NPEC) in radiological evidence was also recorded postoperatively. The clinical outcomes and complications were evaluated afterwards. All patients received 10 to 14 months follow-up, with an average of 12 months.

Result: This MR-assisted group (group A) acquired more about the amount of the polymethyl methacrylate (PMMA) injection and postoperative vertebral height and less about postoperative KA, fluoroscopy times, and operation time compared with the control group (group B) (P < 0.05). The VAS scores and ODI scores in both groups have improved, but more significantly in group A (P < 0.05). Also, more cases achieve both-endplates-touching of cement in group A (P < 0.05). And there are less of the loss of vertebral height, KA, and occurrence of re-collapse of the vertebra in group A during the follow-up (P < 0.05).

Conclusion: PKP assisted with MR technology can accurately orientate the position of IVC area, which can be augmented by the balloon leading to more satisfied vertebral height improvement, cement diffusion, and pain relief.

Trial registration: ClinicalTrials.gov Identifier: NCT03959059 . Registered 25 September 2016.

Keywords: IVC; Mixed Reality; OVCF; PKP.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
a (A): anterior vertebral height, (C): central vertebral height, (P): posterior vertebral height. b Kyphotic angle (KA). c Cement non-contact both endplates (NPEC). d CT images. e MRI image of OVCF with IVC. f Postoperative CT images, some part of the vertebra is not filled with cement
Fig. 2
Fig. 2
ad CAD virtual anatomic images and the position of IVC in the merged images of reconstructed vertebra
Fig. 3
Fig. 3
Procedures of PKP with MR technology and CAD virtual anatomic images

References

    1. Bonnard E, Foti P, Kastler A, Amoretti N. Percutaneous vertebroplasty under local anaesthesia: feasibility regarding patients’ experience. Eur Radiol. 2016;27:1512–1516. doi: 10.1007/s00330-016-4521-1.
    1. Mathis JM, Barr JD, Belkoff SM, et al. Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. Am J Neuroradiol. 2001;22:373–381.
    1. Diamond TH, Champion B, Clark WA. Management of acute osteoporotic vertebral fractures: a nonrandomized trial comparing percutaneous vertebroplasty with conservative therapy. Am J Med. 2003;114:257–265. doi: 10.1016/S0002-9343(02)01524-3.
    1. Do HM, Kim BS, Marcellus ML, et al. Prospective analysis of clinical outcomes after percutaneous vertebroplasty for painful osteoporotic vertebral body fractures. AJNR Am J Neuroradiol. 2005;26:1623–1628.
    1. Voormolen MHJ, Mali WPTM, Lohle PNM, et al. Percutaneous vertebroplasty compared with optimal pain medication treatment: short-term clinical outcome of patients with subacute or chronic painful osteoporotic vertebral compression fractures. The VERTOS study. AJNR Am J Neuroradiol. 2007;28:555–560.
    1. Clarençon F, Fahed R, Gabrieli J, et al. Safety and clinical effectiveness of percutaneous vertebroplasty in the elderly (≥80 years) Eur Radiol. 2016;26:2352–2358. doi: 10.1007/s00330-015-4035-2.
    1. Kim YJ, Lee JW, Kim KJ, Chung SK, Kim HJ, Park JM, Kang HS. Percutaneous vertebroplasty for intravertebral cleft: analysis of therapeutic effects and outcome predictors. Skeletal Radiol. 2010;39:757–766. doi: 10.1007/s00256-009-0866-8.
    1. Kim YC, Kim YH, Ha KY. Pathomechanism of intravertebral clefts in osteoporotic compression fractures of the spine. Spine J. 2014;14:659–666. doi: 10.1016/j.spinee.2013.06.106.
    1. Linn J, Birkenmaier C, Hoffmann RT, Reiser M, Baur-Melnyk A. The intravertebral cleft in acute osteoporotic fractures: fluid in magnetic resonance imaging-vacuum in computed tomography? Spine. 2009;34:E88–E93. doi: 10.1097/BRS.0b013e318193ca06.
    1. Zhang J, He X, Fan Y, Du J, Hao D. Risk factors for conservative treatment failure in acute osteoporotic vertebral compression fractures (OVCFs) Arch Osteoporos. 2019;14:24. doi: 10.1007/s11657-019-0563-8.
    1. Sasaki Y, Aoki Y, Nakajima A, Shibata Y, Sonobe M, Takahashi K, et al. Delayed neurologic deficit due to foraminal stenosis following osteoporotic late collapse of a lumbar spine vertebral body. Case Reports in Orthopedics. 2013;2013:1–5. doi: 10.1155/2013/682075.
    1. Ito Y, Hasegawa Y, Toda K, Nakahara S. Pathogenesis and diagnosis of delayed vertebral collapse resulting from osteoporotic spinal fracture. Spine J. 2002;2:101–106. doi: 10.1016/S1529-9430(01)00165-6.
    1. Ha KY, Lee JS, Kim KW, et al. Percutaneous vertebroplasty for vertebral compression fractures with and without intravertebral clefts. J Bone Joint Surg Br. 2006;88:629–633. doi: 10.1302/0301-620X.88B5.17345.
    1. Koh YH, Han D, Cha JH, Seong CK, Kim J, Choi YH. Vertebroplasty: magnetic resonance findings related to cement leakage risk. Acta Radiologica. 2007;48(3):315–320. doi: 10.1080/02841850601161554.
    1. Heo DH, Chin DK, Yoon YS, Kuh SU. Recollapse of previous vertebral compression fracture after percutaneous vertebroplasty. Osteoporosis International. 2009;20(3):473–480. doi: 10.1007/s00198-008-0682-3.
    1. Li KC, Wong TU, Kung FC, Li A, Hsieh CH. Staging of Kümmell’s disease. J Musculoskelet Res. 2004;8(01):13. doi: 10.1142/S0218957704001181.
    1. Wu AM, Ni WF, Weng W, Chi YL, Xu HZ, Wang XY. Outcomes of percutaneous kyphoplasty in patients with intravertebral vacuum cleft. Acta Orthop Belg. 2012;78:790–795.
    1. Kim YY, Rhyu KW. Recompression of vertebral body after balloon kyphoplasty for osteoporotic vertebral compression fracture. Eur Spine J. 2010;19(11):1907–1912. doi: 10.1007/s00586-010-1479-6.
    1. Nicola S, Stoicu-Tivadar L. Mixed reality supporting modern medical education. Stud Health Technol Inform. 2018;255:242–246.
    1. Eck U, Winkler A. Display technologies for augmented reality in medical applications. Unfallchirurg. 2018;121:278–285. doi: 10.1007/s00113-018-0463-1.
    1. Bova FJ, Rajon DA, Friedman WA, Murad GJ, Hoh DJ, Jacob RP, Lampotang S, Lizdas DE, Lombard G, Lister JR. Mixed-reality simulation for neurosurgical procedures. Neurosurg. 2013:138–45.
    1. Sappenfield JW, Smith WB, Cooper LA, et al. Visualization improves supraclavicular access to the subclavian vein in a mixed reality simulator. Anesth Analg. 2018;127(1):83–89. doi: 10.1213/ANE.0000000000002572.
    1. Lee SC, Fuerst B, Tateno K, et al. Multi-modal imaging, model-based tracking, and mixed reality visualisation for orthopaedic surgery. Healthc Technol Lett. 2017;4(5):168–173. doi: 10.1049/htl.2017.0066.
    1. Fischer M, Fuerst B, Lee SC, et al. Preclinical usability study of multiple augmented reality concepts for K-wire placement. Int J Comput Assist Radiol Surg. 2016;11(6):1007–1014. doi: 10.1007/s11548-016-1363-x.
    1. Limthongkul W, Karaikovic EE, Savage JW, Markovic A. Volumetric analysis of thoracic and lumbar vertebral bodies. Spine J. 2010;10:153–158. doi: 10.1016/j.spinee.2009.11.018.
    1. Kawaguchi S, Horigome K, Yajima H, et al. Symptomatic relevance of intravertebral cleft in patients with osteoporotic vertebral fracture. J Neurosurg Spine. 2010;13:267–275. doi: 10.3171/2010.3.SPINE09364.
    1. Fang X, Yu F, Fu S, Song H. Intravertebral clefts in osteoporotic compression fractures of the spine: incidence, characteristics, and therapeutic efficacy. Int J Clin Exp Med. 2015;8(9):16960.
    1. Liang Z, Qiang W, Lin W, Jian S, Qiwei Z, Changtai S. Bone cement distribution in the vertebral body affects chances of recompression after percutaneous vertebroplasty treatment in elderly patients with osteoporotic vertebral compression fractures. Clin Interv Aging. 2017;12:431–436. doi: 10.2147/CIA.S113240.
    1. Gaughen JR, Jensen ME, Schweickert PA, Marx WF, Kallmes DF. The therapeutic benefit of repeat percutaneous vertebroplasty at previously treated vertebral levels. AJNR Am J Neuroradiol. 2002;23(10):1657–1661.
    1. Kim Yeung Jin, Chae Soo Uk, Kim Gang Deuk, Park Kyung Hee, Lee Yeum Sik, Lee Hwang Yong. Radiographic Detection of Osteoporotic Vertebral Fracture without Collapse. Journal of Bone Metabolism. 2013;20(2):89. doi: 10.11005/jbm.2013.20.2.89.
    1. Knavel EM, Rad AE, Thielen KR, Kallmes DF. Clinical outcomes with hemivertebral filling during percutaneous vertebroplasty. AJNR Am J Neuroradiol. 2009;30(3):496. doi: 10.3174/ajnr.A1416.
    1. Wu AM, Chi YL, Ni WF. Vertebral compression fracture with intravertebral vacuum cleft sign: pathogenesis, image, and surgical intervention. Asian Spine J. 2013;7(2):148–155. doi: 10.4184/asj.2013.7.2.148.
    1. Becker S, Tuschel A, Chavanne A, Meissner J, Ogon M. Balloon kyphoplasty for vertebra plana with or without osteonecrosis. J Orthop Surg. 2008;16(1):14–19. doi: 10.1177/230949900801600104.
    1. Ishiyama M, Numaguchi Y, Makidono A, Kobayashi N, Fuwa S, Ohde S, et al. Contrast-enhanced MRI for detecting intravertebral cleft formation: relation to the time since onset of vertebral fracture. Am J Roentgenol. 2013;201(1):W117–W123. doi: 10.2214/AJR.12.9621.
    1. Erbe EM, Clineff TD, Gualtieri G. Comparison of a new bisphenol-a-glycidyl dimethacrylate-based cortical bone void filler with polymethyl methacrylate. Eur Spine J. 2001;10:S147–S152. doi: 10.1007/s005860100288.
    1. Bae H, Hatten HP, Linovitz R, Tahernia AD, Schaufele MK, Mccollom V, et al. A prospective randomized FDA-IDE trial comparing Cortoss with PMMA for vertebroplasty: a comparative effectiveness research study with 24-month follow-up. Spine. 2012;37(7):544–550. doi: 10.1097/BRS.0b013e31822ba50b.
    1. Niu Junjie, Zhou Haifei, Meng Qian, Shi Jinhui, Meng Bin, Yang Huilin. Factors affecting recompression of augmented vertebrae after successful percutaneous balloon kyphoplasty: a retrospective analysis. Acta Radiologica. 2014;56(11):1380–1387. doi: 10.1177/0284185114556016.
    1. Torres I, De Luccia N. A simulator for training in endovascular aneurysm repair: the use of three dimensional printers. Eur J Vasc Endovasc Surg. 2017;54(2):247–253. doi: 10.1016/j.ejvs.2017.05.011.
    1. Stefan P, Habert S, Winkler A, Lazarovici M, Fürmetz J, Eck U, Navab N. A radiation-free mixed-reality training environment and assessment concept for C-arm-based surgery. Int J Comput Assist Radiol Surg. 2018;13:1335–1344. doi: 10.1007/s11548-018-1807-6.
    1. Wu AM, Wang S, Weng WQ, Shao ZX, Yang XD, Wang JS, et al. The radiological feature of anterior occiput-to-axis screw fixation as it guides the screw trajectory on 3D printed models: a feasibility study on 3D images and 3D printed models. Medicine. 2014;93(28):e242. doi: 10.1097/MD.0000000000000242.
    1. Wu AM, Shao ZX, Wang JS, Yang XD, Weng WQ, Wang XY, Xu HZ, Chi YL, Lin ZK. The accuracy of a method for printing three-dimensional spinal models. PLoS ONE. 2015;10:e0124291. doi: 10.1371/journal.pone.0124291.
    1. Maruthappu M., Keogh B. How might 3D printing affect clinical practice? BMJ. 2014;349(dec30 1):g7709–g7709. doi: 10.1136/bmj.g7709.
    1. Sugawara T, Higashiyama N, Kaneyama S, Sumi M. Accurate and simple screw insertion procedure with patient-specific screw guide templates for posterior C1-C2 fixation. Spine. 2016;42(6):1.
    1. Liu K, Zhang Q, Li X, Zhao C, Quan X, Zhao R, et al. (2016) Preliminary application of a multi-level 3D printing drill guide template for pedicle screw placement in severe and rigid scoliosis. European Spine Journal.
    1. Ghanai S, Marmulla R, Wiechnik J, et al. Computer-assisted three -dimensional surgical planning: 3D virtual articulator: technical note. Int J Oral Maxillofac Surg. 2010;39(1):75–82. doi: 10.1016/j.ijom.2009.10.023.
    1. Terander AE, Nachabe R, Skulason H, Pedersen K, Edström E. Feasibility and accuracy of thoracolumbar minimally invasive pedicle screw placement with augmented reality navigation technology. Spine. 2017;43(14):1.
    1. Clark W, Bird P, Gonski P, Diamond TH, Smerdely P, McNeil HP, Schlaphoff G, Bryant C, Barnes E, Gebski V. Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2016;388:1408–1416. doi: 10.1016/S0140-6736(16)31341-1.
    1. Chen YJ, Chen HY, Lo DF, Chen HT, Hsu HC. Kirschner wire-guided technique for inserting a second needle into inadequately filled vertebrae in vertebroplasty: a technical report. Spine J. 2014;14:3025–3029. doi: 10.1016/j.spinee.2014.07.007.
    1. Chen YJ, Chen WH, Chen HT, Hsu HC. Repeat needle insertion in vertebroplasty to prevent re-collapse of the treated vertebrae. Eur J Radiol. 2012;81:558–561. doi: 10.1016/j.ejrad.2011.02.034.
    1. Daisuke U, Yu Y, Yasuhiro N, et al. Balloon kyphoplasty under three-dimensional radiography guidance. Neurologia medico-chirurgica. 2017;57(9):489–495. doi: 10.2176/nmc.tn.2016-0298.

Source: PubMed

3
구독하다