Letrozole sensitizes breast cancer cells to ionizing radiation

David Azria, Christel Larbouret, Severine Cunat, Mahmut Ozsahin, Sophie Gourgou, Pierre Martineau, Dean B Evans, Gilles Romieu, Pascal Pujol, Andre Pèlegrin, David Azria, Christel Larbouret, Severine Cunat, Mahmut Ozsahin, Sophie Gourgou, Pierre Martineau, Dean B Evans, Gilles Romieu, Pascal Pujol, Andre Pèlegrin

Abstract

Introduction: Radiotherapy (RT) is considered a standard treatment option after surgery for breast cancer. Letrozole, an aromatase inhibitor, is being evaluated in the adjuvant setting. We determined the effects of the combination of RT and letrozole in the aromatase-expressing breast tumour cell line MCF-7CA, stably transfected with the CYP19 gene.

Methods: Irradiations were performed using a cobalt-60 source with doses ranging from 0 to 4 Gy. Cells were incubated with androstenedione in the presence or absence of letrozole. Effects of treatment were evaluated using clonogenic assays, tetrazolium salt colorimetric (MTT) assays, and cell number determinations. Cell-cycle analyses were conducted using flow cytometry.

Results: The survival fraction at 2 Gy was 0.66 for RT alone and was 0.44 for RT plus letrozole (P = 0.02). Growth of MCF-7CA cells as measured by the cell number 6 days after radiotherapy (2 and 4 Gy) was decreased by 76% in those cells treated additionally with letrozole (0.7 microM) compared with those receiving radiotherapy alone (P = 0.009). Growth inhibition, assessed either by cell number (P = 0.009) or by the MTT assay (P = 0.02), was increased after 12 days of the combination treatment. Compared with radiation alone, the combination of radiation and letrozole produced a significant decrease in radiation-induced G2 phase arrest and a decrease of cells in the S phase, with cell redistribution in the G1 phase.

Conclusions: These radiobiological results may form the basis for concurrent use of letrozole and radiation as postsurgical adjuvant therapy for breast cancer.

Figures

Figure 1
Figure 1
Aromatase activity in MCF-7 wild-type (wt) and MCF-7CA transfected cell lines. Aromatase activity was measured by the tritiated water assay. Treatment with letrozole inhibited the 40 nM 1β-3H-androstenedione substrate conversion. Open bars, filled bars, and grey bars represent background radioactivity, aromatase activity without treatment, and aromatase activity after treatment with letrozole (100 nM), respectively.
Figure 2
Figure 2
Growth inhibition with letrozole alone. (a) Seven nanomolar letrozole did not inhibit the growth of MCF-7CA cells during 18 days of incubation, whereas (b) 0.7 μM letrozole resulted in about 50% inhibition after 6, 12, and 18 days of incubation. Results are from cell-count assays.
Figure 3
Figure 3
Potentiation of radiation-induced growth inhibition by letrozole measured by clonogenic assay. With radiation alone the MCF-7CA cell survival fraction decreased in a dose-dependent manner, which was significantly potentiated by the addition of 0.7 μM letrozole. For 2 Gy radiation, the surviving fraction was 0.66 with radiation alone and was 0.46 with the addition of letrozole (P = 0.02). For 3 Gy radiation, the corresponding surviving fractions were 0.4 and 0.18, respectively (P = 0.02).
Figure 4
Figure 4
Potentiation of radiation-induced growth inhibition by letrozole measured by the MTT assay. Growth of MCF-7CA cells, measured 6 days after treatment, was inhibited to a 40% greater extent with letrozole plus 2 Gy radiation, and to a 76% greater extent with letrozole plus 4 Gy radiation, compared with radiation alone.
Figure 5
Figure 5
Potentiation of radiation-induced growth inhibition by letrozole measured by cell-count assay. Growth of MCF-7CA cells, measured for 18 days after treatment, was inhibited to a 76% greater extent with letrozole plus 4 Gy radiation after 12 days, and to an 85% greater extent after 18 days, compared with radiation alone. Solid lines, ■ and ◆ represent radiation alone at 2 Gy and 4 Gy, respectively; dotted lines, ■ and ◆ represent combination of radiation plus letrozole (0.7 μM) at 2 Gy and 4 Gy, respectively.
Figure 6
Figure 6
Effect of letrozole (0.7 μM) or/and radiotherapy (RT) on MCF-7CA cell-cycle progression. (a) Control cells were compared with (b) MCF-7CA cells harvested after exposure to letrozole. In the case of RT treatment, cells were harvested after RT (c) without or (d) with letrozole. Cells were fixed and stained with propidium iodide for flow cytometry analysis as described in Materials and methods. Percentages of the G0/G1 phase, the S phase, and the G2/M phase were determined by CellQUEST analysis software on the basis of DNA content of the histogram. Data represent mean values of duplicate samples. Similar results were obtained in replicate experiments.

References

    1. Mouridsen H, Gershanovich M, Sun Y, Perez-Carrion R, Boni C, Monnier A, Apffelstaedt J, Smith R, Sleeboom HP, Janicke F, et al. Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J Clin Oncol. 2001;19:2596–2606.
    1. Mouridsen H, Gershanovich M, Sun Y, Perez-Carrion R, Boni C, Monnier A, Apffelstaedt J, Smith R, Sleeboom HP, Jaenicke F, et al. Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J Clin Oncol. 2003;21:2101–2109. doi: 10.1200/JCO.2003.04.194.
    1. Goss PE, Ingle JN, Martino S, Robert NJ, Muss HB, Piccart MJ, Castiglione M, Tu D, Shepherd LE, Pritchard KI, et al. A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med. 2003;349:1793–1802. doi: 10.1056/NEJMoa032312.
    1. Overgaard M, Jensen MB, Overgaard J, Hansen PS, Rose C, Andersson M, Kamby C, Kjaer M, Gadeberg CC, Rasmussen BB, et al. Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial. Lancet. 1999;353:1641–1648. doi: 10.1016/S0140-6736(98)09201-0.
    1. Overgaard M, Hansen PS, Overgaard J, Rose C, Andersson M, Bach F, Kjaer M, Gadeberg CC, Mouridsen HT, Jensen MB, Zedeler K. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. N Engl J Med. 1997;337:949–955. doi: 10.1056/NEJM199710023371401.
    1. Zhou DJ, Pompon D, Chen SA. Stable expression of human aromatase complementary DNA in mammalian cells: a useful system for aromatase inhibitor screening. Cancer Res. 1990;50:6949–6954.
    1. Eckert RL, Katzenellenbogen BS. Effects of estrogens and antiestrogens on estrogen receptor dynamics and the induction of progesterone receptor in MCF-7 human breast cancer cells. Cancer Res. 1982;42:139–144.
    1. Thompson EA, Jr, Siiteri PK. Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. J Biol Chem. 1974;249:5364–5372.
    1. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1006/abio.1976.9999.
    1. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4.
    1. Early Breast Cancer Trialists' Collaborative Group Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet. 1998;351:1451–1467. doi: 10.1016/S0140-6736(97)11423-4.
    1. Fisher B, Costantino JP, Redmond CK, Fisher ER, Wickerham DL, Cronin WM. Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst. 1994;86:527–537.
    1. Fisher B, Dignam J, Bryant J, Wolmark N. Five versus more than five years of tamoxifen for lymph node-negative breast cancer: updated findings from the National Surgical Adjuvant Breast and Bowel Project B-14 randomized trial. J Natl Cancer Inst. 2001;93:684–690. doi: 10.1093/jnci/93.9.684.
    1. Baum M, Buzdar AU, Cuzick J, Forbes J, Houghton JH, Klijn JG, Sahmoud T. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet. 2002;359:2131–2139. doi: 10.1016/S0140-6736(02)09088-8.
    1. Baum M, Buzdar A, Cuzick J, Forbes J, Houghton J, Howell A, Sahmoud T. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early-stage breast cancer: results of the ATAC (Arimidex, Tamoxifen Alone or in Combination) trial efficacy and safety update analyses. Cancer. 2003;98:1802–1810. doi: 10.1002/cncr.11745.
    1. Fisher B, Bauer M, Margolese R, Poisson R, Pilch Y, Redmond C, Fisher E, Wolmark N, Deutsch M, Montague E, et al. Five-year results of a randomized clinical trial comparing total mastectomy and segmental mastectomy with or without radiation in the treatment of breast cancer. N Engl J Med. 1985;312:665–673.
    1. Osborne CK, Boldt DH, Clark GM, Trent JM. Effects of tamoxifen on human breast cancer cell cycle kinetics: accumulation of cells in early G1 phase. Cancer Res. 1983;43:3583–3585.
    1. Sinclair WK. Cyclic X-ray responses in mammalian cells in vitro. Radiat Res. 1968;33:620–643.
    1. Wazer DE, Tercilla OF, Lin PS, Schmidt-Ullrich R. Modulation in the radiosensitivity of MCF-7 human breast carcinoma cells by 17B-estradiol and tamoxifen. Br J Radiol. 1989;62:1079–1083.
    1. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci USA. 1986;83:2496–2500.
    1. Butler WB, Kelsey WH, Goran N. Effects of serum and insulin on the sensitivity of the human breast cancer cell line MCF-7 to estrogen and antiestrogens. Cancer Res. 1981;41:82–88.
    1. Page MJ, Field JK, Everett NP, Green CD. Serum regulation of the estrogen responsiveness of the human breast cancer cell line MCF-7. Cancer Res. 1983;43:1244–1250.
    1. Germain P, Harbrioux G. Modulation of the estradiol-17 beta mitogenic effect on human breast cancer MCF-7 cells by serum albumin in defined medium. Anticancer Res. 1993;13:1581–1585.
    1. Gould MN, Clifton KH. The survival of rat mammary gland cells following irradiation in vivo under different endocrinological conditions. Int J Radiat Oncol Biol Phys. 1978;4:629–632.
    1. Sarkaria JN, Miller EM, Parker CJ, Jordan VC, Mulcahy RT. 4-Hydroxytamoxifen, an active metabolite of tamoxifen, does not alter the radiation sensitivity of MCF-7 breast carcinoma cells irradiated in vitro. Breast Cancer Res Treat. 1994;30:159–165. doi: 10.1007/BF00666060.
    1. Cormier EM, Jordan VC. Contrasting ability of antiestrogens to inhibit MCF-7 growth stimulated by estradiol or epidermal growth factor. Eur J Cancer Clin Oncol. 1989;25:57–63. doi: 10.1016/0277-5379(89)90051-5.
    1. Steel GG, Peckham MJ. Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys. 1979;5:85–91.
    1. Steel GG. Terminology in the description of drug–radiation interactions. Int J Radiat Oncol Biol Phys. 1979;5:1145–1150.
    1. Paulsen GH, Strickert T, Marthinsen AB, Lundgren S. Changes in radiation sensitivity and steroid receptor content induced by hormonal agents and ionizing radiation in breast cancer cells in vitro. Acta Oncol. 1996;35:1011–1019.
    1. Miller WR, Hawkins RA, Forrest AP. Significance of aromatase activity in human breast cancer. Cancer Res. 1982;42:3365s–3368s.
    1. O'Neill JS, Miller WR. Aromatase activity in breast adipose tissue from women with benign and malignant breast diseases. Br J Cancer. 1987;56:601–604.
    1. O'Neill JS, Elton RA, Miller WR. Aromatase activity in adipose tissue from breast quadrants: a link with tumour site. Br Med J. 1988;296:741–743. Clin Res Ed.

Source: PubMed

3
구독하다