Evaluation of cardiovascular biomarkers in a randomized trial of fosamprenavir/ritonavir vs. efavirenz with abacavir/lamivudine in underrepresented, antiretroviral-naïve, HIV-infected patients (SUPPORT): 96-week results

Princy Kumar, Edwin DeJesus, Gregory Huhn, Louis Sloan, Catherine Butkus Small, Howard Edelstein, Franco Felizarta, Ritche Hao, Lisa Ross, Britt Stancil, Keith Pappa, Belinda Ha, SUPPORT Study Team, Princy Kumar, Edwin DeJesus, Gregory Huhn, Louis Sloan, Catherine Butkus Small, Howard Edelstein, Franco Felizarta, Ritche Hao, Lisa Ross, Britt Stancil, Keith Pappa, Belinda Ha, SUPPORT Study Team

Abstract

Background: Rates of cardiovascular disease are higher among HIV-infected patients as a result of the complex interplay between traditional risk factors, HIV-related inflammatory and immunologic changes, and effects of antiretroviral therapy (ART). This study prospectively evaluated changes in cardiovascular biomarkers in an underrepresented, racially diverse, HIV-1-infected population receiving abacavir/lamivudine as backbone therapy.

Methods: This 96-week, open-label, randomized, multicenter study compared once-daily fosamprenavir/ritonavir 1400/100 mg and efavirenz 600 mg, both with ABC/3TC 600 mg/300 mg, in antiretroviral-naïve, HLA-B*5701-negative adults without major resistance mutations to study drugs. We evaluated changes from baseline to weeks 4, 12, 24, 48, and 96 in interleukin-6 (IL-6), high-sensitivity C-reactive protein (hs-CRP), soluble vascular adhesion molecule-1 (sVCAM-1), d-dimer, plasminogen, and fibrinogen. Biomarker data were log-transformed before analysis, and changes from baseline were described using geometric mean ratios.

Results: This study enrolled 101 patients (51 receiving fosamprenavir/ritonavir; 50 receiving efavirenz): 32% female, 60% African American, and 38% Hispanic/Latino; 66% (67/101) completed 96 weeks on study. At week 96, levels of IL-6, sVCAM-1, d-dimer, fibrinogen, and plasminogen were lower than baseline in both treatment groups, and the decrease was statistically significant for sVCAM-1 (fosamprenavir/ritonavir and efavirenz), d-dimer (fosamprenavir/ritonavir and efavirenz), fibrinogen (efavirenz), and plasminogen (efavirenz). Values of hs-CRP varied over time in both groups, with a significant increase over baseline at Weeks 4 and 24 in the efavirenz group. At week 96, there was no difference between the groups in the percentage of patients with HIV-1 RNA <50 copies/mL (fosamprenavir/ritonavir 63%; efavirenz 66%) by ITT missing-equals-failure analysis. Treatment-related grade 2-4 adverse events were more common with efavirenz (32%) compared with fosamprenavir/ritonavir (20%), and median lipid concentrations increased in both groups over 96 weeks of treatment.

Conclusions: In this study of underrepresented patients, treatment with abacavir/lamivudine combined with either fosamprenavir/ritonavir or efavirenz over 96 weeks, produced stable or declining biomarker levels except for hs-CRP, including significant and favorable decreases in thrombotic activity (reflected by d-dimer) and endothelial activation (reflected by sVCAM-1). Our study adds to the emerging data that some cardiovascular biomarkers are decreased with initiation of ART and control of HIV viremia.

Trial registration: ClinicalTrials.gov identifier NCT00727597.

Figures

Figure 1
Figure 1
Virologic response (% of patients with HIV-1 RNA <50 copies/mL) over 96 weeks. Virologic response by screening HIV-1 RNA.
Figure 2
Figure 2
Median fasting lipid concentrations at baseline and at 96 weeks.
Figure 3
Figure 3
Change from baseline in cardiovascular biomarkers (expressed as geometric mean ratios) over 96 weeks. Inflammatory biomarkers: A = hs-CRP, B = interleukin-6. Endothelial activation biomarker: C = sVCAM-1. Thrombotic biomarkers: D = d-dimer, E = fibrinogen, F = plasminogen.

References

    1. Centers for Disease Control and Prevention. Leading causes of death. [ ]
    1. High KP, Brennan-Ing M, Clifford DB, Cohen MH, Currier J, Deeks SG, Deren S, Effros RB, Gebo K, Gorozy JJ, Justice AC, Landay A, Levin J, Miotti PG, Munk RJ, Nass H, Rinaldo CR Jr, Shilpak MG, Tracy R, Valcour V, Vance DE, Walston JD, Volberding P. OAR Working Group on HIV and Aging. HIV and aging: state of knowledge and areas of critical need for research. A report to the NIH Office of AIDS Research by the HIV and Aging Working Group. J Acquir Immune Defic Syndr. 2012;60:S1–S18.
    1. Fichtenbaum CJ. Does antiretroviral therapy increase or decrease the risk of cardiovascular disease? Curr HIV/AIDS Rep. 2010;7:92–98. doi: 10.1007/s11904-010-0045-5.
    1. Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab. 2007;92:2506–2512. doi: 10.1210/jc.2006-2190.
    1. Schouten J, AGEhIV Study Group. Comorbidity and ageing with HIV: a prospective comparative cohort study. Washington, DC: Program and abstracts of the XIX International AIDS Conference; 2012. Oral presentation THAB0205.
    1. Tseng ZH, Secemsky EA, Dowdy D, Vittinghoff E, Moyers B, Wong JK, Havlir DV, Hsue PY. Sudden cardiac death in patients with human immunodeficiency virus infection. J Am Coll Cardiol. 2012;59:1891–1896. doi: 10.1016/j.jacc.2012.02.024.
    1. Baker JV, Lundgren JD. Cardiovascular implications from untreated human immunodeficiency virus infection. European Heart J. 2011;32:945–951. doi: 10.1093/eurheartj/ehq483.
    1. Thomas AJ, Eberly LE, Davey Smith G, Neaton JD, Stamler J. Race/ethnicity, income, major risk factors, and cardiovascular disease mortality. Am J Public Health. 2005;95:1417–1423. doi: 10.2105/AJPH.2004.048165. Epub 2005 Jul 7.
    1. Kristoffersen US, Kofoed K, Kronborg G, Giger AK, Kjaer A, Lebech AM. Reduction in circulating markers of endothelial dysfunction in HIV-infected patients during antiretroviral therapy. HIV Med. 2009;10:79–87. doi: 10.1111/j.1468-1293.2008.00661.x.
    1. Padilla S, Masia M, Garcia N, Jarrin I, Tormo C, Gutierrez F. Early changes in inflammatory and pro-thrombotic biomarkers in patients initiating antiretroviral therapy with abacavir or tenofovir. BMC Infect Dis. 2011;11:40. doi: 10.1186/1471-2334-11-40.
    1. Shikuma CM, Ribaudo HJ, Zheng Y, Gulick RM, Meyer WA III, Tashima KT, Bastow B, Kurtizkes DR, Glesby MJ. AIDS Clinical Trials Group A5095 Study Team. Change in high-sensitivity C-reactive protein levels following initiation of efavirenz-based antiretroviral regimens in HIV-infected individuals. AIDS Res Hum Retroviruses. 2011;27:461–468. doi: 10.1089/aid.2010.0154.
    1. Smith KY, Patel P, Fine D, Bellos N, Sloan L, Lackey P, Kumar PN, Sutherland-Phillips DH, Vavro C, Yau L, Wannamaker P, Schaefer MS. HEAT study team. Randomized, double-blind, placebo-matched, multicenter trial of abacavir/lamivudine or tenofovir/emtricitabine with lopinavir/ritonavir for initial HIV treatment. AIDS. 2009;23:1547–1556. doi: 10.1097/QAD.0b013e32832cbcc2.
    1. Palella FJ Jr, Gange SJ, Benning L, Jacobson L, Kaplan RC, Landay AL, Tracy RP, Elion R. Inflammatory biomarkers and abacavir use in the Women’s Interagency HIV Study and the Multicenter AIDS Cohort Study. AIDS. 2010;24:1567–1665.
    1. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Melbourne K, Ha B, Brown TT, Bloom A, Fedarko N, Sax PE. Inflammation markers after randomization to abacavir/lamivudine or tenofovir/emtricitabine with efavirenz or atazanavir/ritonavir. AIDS. 2012;26:1371–1385. doi: 10.1097/QAD.0b013e328354f4fb.
    1. Daar ES, Tierney C, Fischl MA, Sax PE, Mollan K, Budhathoki C, Godfrey C, Jahed NC, Myers L, Katzenstein D, Farajallah A, Rooney JF, Pappa KA, Woodward WC, Patterson K, Bolivar H, Benson CA, Collier AC. AIDS Clinical Trials Group Study A5202 Study Team. Atazanavir plus ritonavir or efavirenz as part of a 3-drug regimen for initial treatment of HIV-1: a randomized trial. Ann Intern Med. 2011;154:445–456. doi: 10.7326/0003-4819-154-7-201104050-00316.
    1. Tien PC, Choi AI, Zolopa AR, Benson C, Scherzer R, Bacchetti P, Shlipak M, Grunfeld C. Inflammation and mortality in HIV-infected adults: analysis of the FRAM study cohort. J Acquir Immune Defic Syndr. 2010;55:316–322. doi: 10.1097/QAI.0b013e3181e66216.
    1. Wegner S, Vahey M, Dolan M, Wallace M, Aronson N, Barile A, Emmons W, Frazier S, Stephan K, Nau M, Piscitelli S, Harrigan R, Larder B. Racial differences in clinical efficacy of efavirenz-based antiretroviral therapy. Seattle, Washington: Program and abstracts of the 9th Conference on Retroviruses and Opportunistic Infections; 2002. Abstract 428-W.
    1. Haas DW, Smeaton LM, Shafer RW, Robbins GK, Morse GD, Labbe L, Wilkinson GR, Clifford DB, D’Aquila RT, De Gruttola V, Pollard RB, Merigan TC, Hirsch MS, George AL Jr, Donahue JP, Kim RB. Pharmacogenetics of long-term responses to antiretroviral regimens containing efavirenz and/or nelfinavir: an Adult AIDS Clinical Trials Group study. J Infect Dis. 2005;192:1931–1942. doi: 10.1086/497610.
    1. Gulick RM, Ribaudo HJ, Shikuma CM, Lalama C, Schackman BR, Meyer WA III, Acosta EP, Schouten J, Squires KE, Pilcher CD, Murphy RL, Koletar SL, Carlson M, Reichman RC, Bastow B, Klingman KL, Kuritzkes DR. AIDS Clinical Trials Group (ACTG) A5095 Study Team. Three- vs four-drug antiretroviral regimens for the initial treatment of HIV-1 infection: a randomized controlled trial. JAMA. 2006;296:769–781. doi: 10.1001/jama.296.7.769.
    1. Kumar PN, Rodriguez-French A, Thompson MA, Tashima KT, Averitt D, Wannamaker PG, Williams VC, Shaefer MS, Pakes GE, Pappa KA. ESS40002 Study Team. A prospective, 96-week study of the impact of Trizivir, Combivir/nelfinavir, and lamivudine/stavudine/nelfinavir on lipids, metabolic parameters and efficacy in antiretroviral-naive patients: effect of sex and ethnicity. HIV Med. 2006;7:85–98. doi: 10.1111/j.1468-1293.2006.00346.x.
    1. King J, Aberg JA. Clinical impact of patient population differences and genomic variation in efavirenz therapy. AIDS. 2008;22:1709–1717. doi: 10.1097/QAD.0b013e32830163ad.
    1. Smith K, Tierney C, Daar E, Mollan K, Budhathoki C, Sax P, Katzenstein D, Godfrey C, Fischl M, Collier A, ACTG A5202 Study Team. Association of race/ethnicity and sex on outcomes in ACTG study A5202. Boston, Massachusetts: Program and abstracts of the 18th Conference on Retroviruses and Opportunistic Infections; 2011. Abstract 536.
    1. Friis-Møller N, Reiss P, Sabin CA, Weber R, Monforte A, El-Sadr W, Thiébaut R, De Wit S, Kirk O, Fontas E, Law MG, Phillips A, Lundgren JD. DAD Study Group. Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med. 2007;356:1723–1735.
    1. Sabin CA, Worm SW, Weber R, Reiss P, El-Sadr W, Dabis F, De Wit S, Law M, D'Arminio Monforte A, Friis-Møller N, Kirk O, Pradier C, Weller I, Phillips AN, Lundgren JD. D:A:D Study Group. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration. Lancet. 2008;371:1417–1426.
    1. Lang S, Mary-Krause M, Cotte L, Gilquin J, Partisani M, Simon A, Boccara F, Costagliola D. Clinical Epidemiology Group of the French Hospital Database on HIV. Impact of individual antiretroviral drugs on the risk of myocardial infarction in human immunodeficiency virus-infected patients: a case–control study nested within the French Hospital Database on HIV ANRS cohort CO4. Arch Intern Med. 2010;170:1228–1238. doi: 10.1001/archinternmed.2010.197.
    1. Bedimo RJ, Westfall AO, Drechsler H, Vidiella G, Tebas P. Abacavir use and risk of acute myocardial infarction and cerebrovascular events in the highly active antiretroviral therapy era. Clin Infect Dis. 2011;53:84–91. doi: 10.1093/cid/cir269.
    1. Cruciani M, Zanichelli V, Serpelloni G, Bosco O, Malena M, Mazzi R, Mengoli C, Parisi SG, Moyle G. Abacavir use and cardiovascular disease events: a meta-analysis of published and unpublished data. AIDS. 2011;25:1993–2004. doi: 10.1097/QAD.0b013e328349c6ee.
    1. Ding X, Andraca-Carrera E, Cooper C, Miele P, Kornegay C, Soukup M, Marcus KA. No association of abacavir use with myocardial infarction: findings of an FDA meta-analysis. J Acquir Immune Defic Syndr. 2012;61:441–447. doi: 10.1097/QAI.0b013e31826f993c.
    1. Young B, Squires K, Patel P, Dejesus E, Bellos N, Berger D, Sutherland-Phillips DH, Liao Q, Shaefer M, Wannamaker P. First large, multicenter, open-label study utilizing HLA-B*5701 screening for abacavir hypersensitivity in North America. AIDS. 2008;22:1673–1675. doi: 10.1097/QAD.0b013e32830719aa.
    1. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. Available at: . Accessed 26 April 2013. Page C-22.
    1. Fichtenbaum C. Inflammatory markers associated with coronary heart disease in persons with HIV infection. Curr Infect Dis Rep. 2011;13:94–101. doi: 10.1007/s11908-010-0153-9.
    1. Baker JV, Neuhaus J, Duprez D, Kuller LW, Tracy R, Belloso WH, De Wit S, Drummond F, Lane HC, Ledergerber B, Lundgren J, Nixon DE, Paton NI, Neaton JD. INSIGHT SMART Study Group. Changes in inflammatory and coagulation biomarkers: a randomized comparison of immediate versus deferred antiretroviral therapy in patients with HIV infection. J Acquir Immune Defic Syndr. 2011;56:36–43. doi: 10.1097/QAI.0b013e3181f7f61a.
    1. Arildsen H, Sorensen K, Ingerslev J, Ostergaard L, Laursen A. Endothelial dysfunction, increased inflammation, and activated coagulation in HIV-infected patients improve after initiation of highly active antiretroviral therapy. HIV Med. 2012. epub prior to print.
    1. Kaplan RC, Landay AL, Hodis HN, Gange SJ, Norris PJ, Young M, Anastos K, Tien PC, Xue X, Lazar J, Parrinello CM, Benning L, Tracy RP. Potential cardiovascular disease risk markers among HIV-infected women initiating antiretroviral treatment. J Acquir Immune Defic Syndr. 2012;60:359–368. doi: 10.1097/QAI.0b013e31825b03be.
    1. Baker JV, Neuhaus J, Duprez D, Freiberg M, Bernardino JI, Badley AD, Nixon DE, Lundgren JD, Tracy RP, Neaton JD. INSIGHT SMART Study Group. HIV replication, inflammation, and the effect of starting antiretroviral therapy on plasma asymmetric dimethylarginine, a novel marker of endothelial dysfunction. J Acquir Immune Defic Syndr. 2012;60:128–134. doi: 10.1097/QAI.0b013e318252f99f.
    1. Torriani FJ, Komarow L, Parker RA, Cotter BR, Currier JS, Dubé MP, Fichtenbaum CJ, Gerschenson M, Mitchell CK, Murphy RL, Squires K, Stein JH. ACTG 5152s Study Team. Endothelial function in human immunodeficiency virus-infected antiretroviral-naive subjects before and after starting potent antiretroviral therapy: The ACTG (AIDS Clinical Trials Group) Study 5152s. J Am Coll Cardiol. 2008;52:569–576. doi: 10.1016/j.jacc.2008.04.049.
    1. Murphy RL, Berzins B, Zala C, Fichtenbaum C, Dube MP, Guaraldi G, Torriani F, Belsey E, Mitchell C, Stein JH. SABAR Study Team. Change to atazanavir/ritonavir treatment improves lipids but not endothelial function in patients on stable antiretroviral therapy. AIDS. 2010;24:885–890. doi: 10.1097/QAD.0b013e3283352ed5.

Source: PubMed

3
구독하다