Phase II trial of SM-88, a cancer metabolism based therapy, in non-metastatic biochemical recurrent prostate cancer

Benjamin A Gartrell, Mack Roach 3rd, Avi Retter, Gerald H Sokol, Giuseppe Del Priore, Howard I Scher, Benjamin A Gartrell, Mack Roach 3rd, Avi Retter, Gerald H Sokol, Giuseppe Del Priore, Howard I Scher

Abstract

Background Androgen deprivation therapy (ADT) is a standard treatment for high-risk biochemically-recurrent, non-metastatic prostate cancer (BRPC) but is not curative and associated with toxicity. Racemetyrosine (SM-88) is an amino-acid analogue used with methoxsalen, phenytoin, and sirolimus (MPS) to enhance SM-88 activity. Method A phase 1b/2, open-label trial in BRPC and rising PSA. Patients were given daily SM-88 (230 mg BID), methoxsalen (10 mg), phenytoin (50 mg), and sirolimus (0.5 mg)). Outcome measures included changes in PSA, circulating tumor cells (CTCs) and imaging. Results 34 subjects were screened, 23 treated and 21 remained on study for ≥12 weeks. The median PSA was 6.4 ng/ml (range 1.7-80.1); doubling-time 6.2 months (range 1.4-36.6) and baseline testosterone 319.1 ng/ml (range 2.5-913.7). Median duration of therapy was 6.5 months (2.6-14.0). CTCs (median 48.5 cells/4 ml (range 15-268) at baseline) decreased a median of 65.3% in 18 of 19 patients. For patients who achieved an absolute CTC nadir count of <10 cells/4 ml (n = 10), disease control was 100% i.e. no metastases or PSA progression, while on trial (p = 0.005). PSA fell by ≥50% in 4.3% (1 subject). No patients developed metastatic disease while on treatment (metastases free survival =100%). There were no treatment-related adverse events (AEs) and quality of life was unchanged from baseline on the EORTC QLQ-C30 and QLQ-PR25. Testosterone levels rose slightly on SM-88 and were unrelated to efficacy or toxicity. Conclusions Use of SM-88 was associated with disease control while maintaining QOL. SM-88 may delay the need for ADT and the associated hormonal side effects. Larger trials are planned.Trial registration number, date of registration - NCT02796898, June 13, 2016.

Keywords: Metabolism based therapy; Prostate Cancer; SM-88.

Conflict of interest statement

NY Cancer and Blood received research support from TYME. GHS and GDP are employees or board members at TYME and received salary, equity and other support.

Figures

Fig. 1
Fig. 1
Swimmer’s Plot of Radiographic or PSA Progression Free Survival
Fig. 2
Fig. 2
Individual CTC Results By Radiographic Progression
Fig. 3
Fig. 3
PSA Values Before Treatment
Fig. 4
Fig. 4
Waterfall Plot of Individual Patient PSA Values – By CTC Group. Blue bars indicate patients with local (one with prostate bed) or regional progression (2 with pelvic node)
Fig. 5
Fig. 5
CTC Nadir on SM-88 And PSA or Radiographic Progression
Fig. 6
Fig. 6
Quality of Life And Sexual Health EORTC Questionnaire

References

    1. Roach M, 3rd, Hanks G, Thames H, Jr, Schellhammer P, Shipley WU, Sokol GH, Sandler H. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix consensus conference. Int J Radiat Oncol Biol Phys. 2006;65(4):965–974. doi: 10.1016/j.ijrobp.2006.04.029.
    1. Stega J, Noel MS, Vandell AG, Stega D, Del Priore G. Investig New Drugs. 2019;38:392–401. doi: 10.1007/s10637-019-00758-8.
    1. Gartrell B, Del Priore G, Retter A, Chen WT, Sokol G, Vandell A, Roach M (2019) Evaluating non-hormonal therapy in a phase II trial of SM-88 for rising PSA prostate cancer. J Clin Oncol 37, (suppl 7S; abstr 83).
    1. Gartrell B, Del Priore G, Retter A, Chen WT, Sokol G, Vandell A, Roach M (2019) Typical hormone deprivation side effects compared to SM-88 therapy for rising PSA. J Clin Oncol 37, (suppl 7S; abstr 79).
    1. Zhu X, Noel MS, Zawisny P, Gostout Z, Decorato D, Sokol G, Loushin M, Del Priore G (2018) SM-88 efficacy and safety in metastatic breast cancers. J Clin Oncol 36, (suppl; abstr ASCO 2018a) e13100
    1. Vandell A, Eckard J, Hoffman S, Del Priore G, Fernandez-Zapico, M (2020) In vitro and in vivo anticancer effects of D/L-alpha-metyrosine (SM-88), a novel metabolism-based therapy
    1. Shen YQ, Guerra Librero Rite A, Fernandez-Gil BI, et al. Combination of melatonin and rapamycin for head and neck cancer therapy: Supression od AKT/mTor pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J Pineal Res. 2017;64(3):e12461. doi: 10.1111/jpi.12461.
    1. Calestretti A, Gatti G, Lucini V, Dugnani S, Canti G, Scaglione F, Bevilacqua A (2018) Melatonin analogue Antiproliferative and cytotoxic effects on human prostate cancer cells. Int J Mol Sci 19(5)
    1. Sikes RA, Walls AM, Brennen WN, Anderson JD, Choudhury-Mukherjee I, Schenck HA, Brown ML. Therapeutic approaches targeting prostate cancer progression using novel voltage-gated ion channel blockers. Clin Prostate Cancer. 2003;2(3):181–187. doi: 10.3816/CGC.2003.n.028.
    1. Noel MS, Wang-Gillam A, Ocean AJ, Chawla S, Chung V, DelPriore G, Picozzi VJ (2019) SM-88 therapy in high-risk poor prognosis pancreatic cancer (PDAC). Ann Oncol 30(Supplement_4) mdz155.058
    1. Ocean AJ, Noel MS, Wang-Gillam A, Chawla S, Chung V, Pant S, Korn R, Del Priore G, Picozzi V (2019) Phase II monotherapy efficacy of cancer metabolism targeting SM-88 in heavily pre-treated PDAC patients, Ann Oncol 30(Supplement_5) mdz247.046
    1. Mengeaud V, Ortonne JP. PUVA (5-methoxypsoralen plus UVA) enhances melanogenesis and modulates expression of melanogenic proteins in cultured melanocytes. J Invest Dermatol. 1996;107(1):57–62. doi: 10.1111/1523-1747.ep12298031.
    1. Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA. Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol. 2014;134(6):1512–1518. doi: 10.1038/jid.2014.65.
    1. Jiang S, Zou Z, Nie P, Wen R, Xiao Y, Tang J. Synergistic effects between mTOR complex 1/2 and glycolysis inhibitors in non-small-cell lung carcinoma cells. PLoS One. 2015;10(7):e0132880. doi: 10.1371/journal.pone.0132880.
    1. Kittipongdaja W, Wu X, Garner J, Liu X, Komas SM, Hwang ST, Schieke SM. Sirolimus suppresses tumor growth and alters the metabolic phenotype in T-cell lymphoma. J Invest Dermatol. 2015;135(9):2301–2308. doi: 10.1038/jid.2015.153.
    1. Mintzer S, Miller R, Shah K, Chervoneva I, Nei M, Skidmore C, Sperling MR. Long-term effect of antiepileptic drug switch on serum lipids and C-reactive protein. Epilepsy Behav. 2016;58:127–132. doi: 10.1016/j.yebeh.2016.02.023.
    1. Senniappan S, Alexandrescu S, Tatevian N, Shah P, Arya V, Flanagan S, Ellard S, Rampling D, Ashworth M, Brown RE, Hussain K. Sirolimus therapy in infants with severe hyperinsulinemic hypoglycemia. N Engl J Med. 2014;370(12):1131–1137. doi: 10.1056/NEJMoa1310967.
    1. Tulley S, Zhao Q, Dong H, Pearl ML, Chen WT. Vita-assay™ method of enrichment and identification of circulating Cancer cells/circulating tumor cells (CTCs) Methods Mol Biol. 2016;1406:107–119. doi: 10.1007/978-1-4939-3444-7_9.
    1. Del Priore G, Hoffman S, Nixon D (2017) A Phase Ib/II, Open-label, Dose Escalation Study to Evaluate the Safety, Pharmacokinetics, and Efficacy of SM-88 in Patients with Prostate Cancer. J Clin Oncol 35, (suppl; abstr e16540) 3. 10.1200/JCO.2017.35.15_suppl.TPS2615
    1. Del Priore, Chen WT, Dong H, Hoffman S, Sokol G (2017) 797P Phase II trial of SM-88 in non-metastatic biochemical recurrent prostate cancer. Ann Oncol, 28(suppl_5) mdx370.014, 10.1093/annonc/mdx370.014
    1. Sokol GH, Dickey R, Del Priore G, Garzon D, Hoffman S (2016) Preclinical animal data of the SM88 tyrosine isomer, Ann Oncol, 27(suppl_6) 1605P, 10.1093/annonc/mdw393.24
    1. Scher, et al. Circulating tumor cells in prostate Cancer: from discovery to clinical utility. Clin Chem. 2019;65(1):87–99. doi: 10.1373/clinchem.2018.287102.
    1. de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, Doyle GV, Terstappen LW, Pienta KJ, Raghavan D. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14(19):6302–6309. doi: 10.1158/1078-0432.CCR-08-0872.
    1. Scher HI, Heller G, Molina A, Attard G, Danila DC, Jia X, Peng W, Sandhu SK, Olmos D, Riisnaes R, McCormack R, Burzykowski T, Kheoh T, Fleisher M, Buyse M. deBono JS. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol. 2015;33(12):1348–1355. doi: 10.1200/JCO.2014.55.3487.
    1. Scher, et al. Drug development for noncastrate prostate cancer in a changed therapeutic landscape. Nat Rev Clin Oncol. 2018;15(3):150. doi: 10.1038/nrclinonc.2017.177.
    1. Gatenby RA, Zhang J, Brown JS. First strike-second strike strategies in metastatic Cancer: lessons from the evolutionary dynamics of extinction. CancerRes. 2019;79(13):3174–3177.
    1. Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol. 2019;20(7):436–450. doi: 10.1038/s41580-019-0123-5.
    1. Ohshima Y, Hanaoka H, Tominaga H, Kanai Y, Kaira K, Yamaguchi A, Nagamori S, Oriuchi N, Tsushima Y, Endo K, Ishioka NS. Biological evaluation of 3-[(18)F]fluoro-α-methyl-D-tyrosine (D-[(18)F]FAMT) as a novel amino acid tracer for positron emission tomography. Ann Nucl Med. 2013;27(4):314–324. doi: 10.1007/s12149-013-0687-7.
    1. Fernandez-Zapico M et al. Therapeutic Potential of Targeting Amino Acid Metabolism in Pancreatic Cancer. AACR Special Conference on Pancreatic Cancer; 2019 Sep 6–9; Boston (MA): AACR; 2019. Abstract nr 78677080. Poster nr B15. Phase II trial of SM 88 in non-metastatic biochemical recurrent prostate cancer.
    1. Ruggiero RA, Bruzzo J, Chiarella P, Bustuoabad OD, Meiss RP, Pasqualini CD. Concomitant tumor resistance: the role of tyrosine isomers in the mechanisms of metastases control. Cancer Res. 2012;72(5):1043–1050. doi: 10.1158/0008-5472.CAN-11-2964.
    1. Mahle C, Dasgupta A. Decreased total antioxidant capacity and elevated lipid hydroperoxide concentrations in sera of epileptic patients receiving phenytoin. Life Sci. 1997;61(4):437–443. doi: 10.1016/S0024-3205(97)00401-3.
    1. Kvam E, Tyrrell RM. The role of melanin in the induction of oxidative DNA base damage by ultraviolet A irradiation of DNA or melanoma cells. J Invest Dermatol. 1999;113(2):209–213. doi: 10.1046/j.1523-1747.1999.00653.x.
    1. Harb W, Fan A, Tran T, Danila DC, Keys D, Schwartz M, Ionescu-Zanetti C. Mutational analysis of circulating tumor cells using a novel microfluidic collection device and qPCR assay. Transl Oncol. 2013;6(5):528–538. doi: 10.1593/tlo.13367.
    1. Heller G, McCormack R, Kheoh T, Molina A, Smith MR, Dreicer R, Saad F, de Wit R, Aftab DT, Hirmand M, Limon A, Fizazi K, Fleisher M, de Bono JS, Scher HI. Circulating tumor cell number as a response measure of prolonged survival for metastatic castration-resistant prostate Cancer: a comparison with prostate-specific antigen across five randomized phase III clinical trials. J Clin Oncol. 2018;36(6):572–580. doi: 10.1200/JCO.2017.75.2998.
    1. Friedlander TW, Ngo VT, Dong H, Premasekharan G, Weinberg V, Doty S, Zhao Q, Gilbert EG, Ryan CJ, Chen W-T, Paris PL. Detection and Characterization of Invasive Circulating Tumor Cells Derived from Men with Metastatic Castration-Resistant Prostate Cancer. Int J Cancer. 2014;134:2284–2293. doi: 10.1002/ijc.28561.
    1. Friedlander TW, Premasekharan G, Ngo V, Hang E, Graff JN, Ryan CJ, Paris P (2014) Molecular and genomic characterization of invasive circulating tumor cells (iCTCs) from men with metastatic castration-resistant prostate cancer (mCRPC). 10.1200/jco.2014.32.15_suppl.11013 J Clin Oncol 32, 15_suppl 11013–11013
    1. Olsson H, Nordstrom T, Clements M, Gronberg H, Lantz AW, Eklund M (2019) Intensity of Active Surveillance and Transition to Treatment in Men with Low-risk Prostate Cancer. Eur Urol Oncol
    1. Salari K, Kuppermann D, Preston MA, Dahl DM, Barrisford GW, Efstathiou JA, Blute ML, Vesprini D, Loblaw A, Zietman AL, Klotz L, Feldman AS. Active surveillance of prostate Cancer is a viable option for men younger than 60 years. J Urol. 2019;201(4):721–727. doi: 10.1097/JU.0000000000000031.
    1. Gokce MI, Sundi D, Schaeffer E, Pettaway C. Is active surveillance a suitable option for African American men with prostate cancer? A systemic literature review. Prostate Cancer Prostatic Dis. 2017;20(2):127–136. doi: 10.1038/pcan.2016.56.
    1. Kryvenko ON, Balise R, Soodana Prakash N, Epstein JI. African-American men with Gleason score 3+3=6 prostate Cancer produce less prostate specific antigen than Caucasian men: a potential impact on active surveillance. J Urol. 2016;195(2):301–306. doi: 10.1016/j.juro.2015.08.089.
    1. Pantel K, Hille C, Scher HI. Circulating tumor cells in prostate Cancer: from discovery to clinical utility. Clin Chem. 2019;65(1):87–99. doi: 10.1373/clinchem.2018.287102.
    1. Heller G, Fizazi K, McCormack R, Molina A, MacLean D, Webb IJ, Saad F, de Bono JS, Scher HI. The added value of circulating tumor cell enumeration to standard markers in assessing prognosis in a metastatic castration-resistant prostate Cancer population. Clin Cancer Res. 2017;23(8):1967–1973. doi: 10.1158/1078-0432.CCR-16-1224.
    1. Scher HI (2016) Defining new standards of care for men with prostate cancer. Lancet 387(10024):1135–1137.

Source: PubMed

3
구독하다