A Novel Rare Missense Variation of the NOD2 Gene: Evidencesof Implication in Crohn's Disease

Sara Frade-Proud'Hon-Clerc, Thomas Smol, Frédéric Frenois, Olivier Sand, Emmanuel Vaillant, Véronique Dhennin, Amélie Bonnefond, Philippe Froguel, Mathurin Fumery, Nathalie Guillon-Dellac, Corinne Gower-Rousseau, Francis Vasseur, Sara Frade-Proud'Hon-Clerc, Thomas Smol, Frédéric Frenois, Olivier Sand, Emmanuel Vaillant, Véronique Dhennin, Amélie Bonnefond, Philippe Froguel, Mathurin Fumery, Nathalie Guillon-Dellac, Corinne Gower-Rousseau, Francis Vasseur

Abstract

The NOD2 gene, involved in innate immune responses to bacterial peptidoglycan, has been found to be closely associated with Crohn's Disease (CD), with an Odds Ratio ranging from 3⁻36. Families with three or more CD-affected members were related to a high frequency of NOD2 gene variations, such as R702W, G908R, and 1007fs, and were reported in the EPIMAD Registry. However, some rare CD multiplex families were described without identification of common NOD2 linked-to-disease variations. In order to identify new genetic variation(s) closely linked with CD, whole exome sequencing was performed on available subjects, comprising four patients in two generations affected with Crohn's disease without R702W and G908R variation and three unaffected related subjects. A rare and, not yet, reported missense variation of the NOD2 gene, N1010K, was detected and co-segregated across affected patients. In silico evaluation and modelling highlighted evidence for an adverse effect of the N1010K variation with regard to CD. Moreover, cumulative characterization of N1010K and 1007fs as a compound heterozygous state in two, more severe CD family members strongly suggests that N1010K could well be a new risk factor involved in Crohn's disease genetic susceptibility.

Keywords: Crohn’s disease; NOD2 gene; WES; variation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(A) Pedigree of family F49M with segregation of the c.3030A>C; p.(N1010K) and c.3019dupC; p.(L1007fs) variations. (B) Chromatograms for NOD2 coding region in exon 11. The red arrows show the c.3030A>C nucleotide substitution consisting of the amino acid substitution N1010K. The black arrows show the c.3019dupC frameshift variation (rs2066847).
Figure 2
Figure 2
(A) Location of the p.R702W (rs2066844), p.G908R (rs2066845), p.L1007fs (rs2066847) and p.N1010K NOD2 protein-altering variations. (B) Multiple alignments for the amino acid sequence of the NOD2 proteins in 11 species in agreement with a conserved amino acid.
Figure 3
Figure 3
(A) Structural predictions of the human native NOD2 protein (amino-acids 219–1040) and the human R702W mutated NOD2 proteins (amino-acids 219–1040); (B) structural predictions of the human native NOD2 protein (amino-acids 219–1040) and the human G908R mutated NOD2 proteins (amino-acids 219–1040); (C) structural predictions of the human native NOD2 protein (amino-acids 219–1040) and the human N1010K mutated NOD2 proteins (amino-acids 219–1040).

References

    1. Qin X. Etiology of inflammatory bowel disease: A unified hypothesis. World J. Gastroenterol. 2012;18:1708–1722. doi: 10.3748/wjg.v18.i15.1708.
    1. Hugot J.P., Chamaillard M., Zouali H., Lesage S., Cézard J.P., Belaiche J., Almer S., Tysk C., O’Morain C.A., Gassull M., et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603. doi: 10.1038/35079107.
    1. Lesage S., Zouali H., Cézard J.-P., Colombel J.-F., Belaiche J., Almer S., Tysk C., O’Morain C., Gassull M., Binder V., et al. CARD15/NOD2 Mutational Analysis and Genotype-Phenotype Correlation in 612 Patients with Inflammatory Bowel Disease. Am. J. Hum. Genet. 2002;70:845–857. doi: 10.1086/339432.
    1. Rivas M.A., Beaudoin M., Gardet A., Stevens C., Sharma Y., Zhang C.K., Boucher G., Ripke S., Ellinghaus D., Burtt N., et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 2011;43:1066–1073. doi: 10.1038/ng.952.
    1. Franke A., McGovern D.P.B., Barrett J.C., Wang K., Radford-Smith G.L., Ahmad T., Lees C.W., Balschun T., Lee J., Roberts R., et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 2010;43:1118–1125. doi: 10.1038/ng.717.
    1. Gower-Rousseau C., Salomez J.L., Dupas J.L., Marti R., Nuttens M.C., Votte A., Lemahieu M., Lemaire B., Colombel J.F., Cortot A. Incidence of inflammatory bowel disease in northern France (1988–1990) Gut. 1994;35:1433–1438. doi: 10.1136/gut.35.10.1433.
    1. Gower-Rousseau C., Vasseur F., Fumery M., Savoye G., Salleron J., Dauchet L., Turck D., Cortot A., Peyrin-Biroulet L., Colombel J.-F. Epidemiology of inflammatory bowel diseases: New insights from a French population-based registry (EPIMAD) Dig. Liver Dis. 2013;45:89–94. doi: 10.1016/j.dld.2012.09.005.
    1. Vasseur F., Sendid B., Jouault T., Standaert-Vitse A., Dubuquoy L., Francois N., Gower-Rousseau C., Desreumaux P., Broly F., Vermeire S., et al. Variants of NOD1 and NOD2 genes display opposite associations with familial risk of Crohn’s disease and anti-saccharomyces cerevisiae antibody levels. Inflamm. Bowel Dis. 2012;18:430–438. doi: 10.1002/ibd.21817.
    1. Ogura Y., Bonen D.K., Inohara N., Nicolae D.L., Chen F.F., Ramos R., Britton H., Moran T., Karaliuskas R., Duerr R.H., et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–606. doi: 10.1038/35079114.
    1. Philpott D.J., Sorbara M.T., Robertson S.J., Croitoru K., Girardin S.E. NOD proteins: Regulators of inflammation in health and disease. Nat. Rev. Immunol. 2014;14:9–23. doi: 10.1038/nri3565.
    1. Inohara, Chamaillard, McDonald C., Nuñez G. NOD-LRR proteins: Role in host-microbial interactions and inflammatory disease. Annu. Rev. Biochem. 2005;74:355–383. doi: 10.1146/annurev.biochem.74.082803.133347.
    1. Inohara N., Ogura Y., Fontalba A., Gutierrez O., Pons F., Crespo J., Fukase K., Inamura S., Kusumoto S., Hashimoto M., et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J. Biol. Chem. 2003;278:5509–5512. doi: 10.1074/jbc.C200673200.
    1. Cho J.H. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 2008;8:458–466. doi: 10.1038/nri2340.
    1. Gavel Y., von Heijne G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: Implications for protein engineering. Protein Eng. 1990;3:433–442. doi: 10.1093/protein/3.5.433.
    1. Maekawa S., Ohto U., Shibata T., Miyake K., Shimizu T. Crystal structure of NOD2 and its implications in human disease. Nat. Commun. 2016;7:11813. doi: 10.1038/ncomms11813.
    1. Barnich N., Hisamatsu T., Aguirre J.E., Xavier R., Reinecker H.-C., Podolsky D.K. GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells. J. Biol. Chem. 2005;280:19021–19026. doi: 10.1074/jbc.M413776200.
    1. Girardelli M., Vuch J., Tommasini A., Crovella S., Bianco A.M. Novel missense mutation in the NOD2 gene in a patient with early onset ulcerative colitis: Causal or chance association? Int. J. Mol. Sci. 2014;15:3834–3841. doi: 10.3390/ijms15033834.
    1. Chen Y., Salem M., Boyd M., Bornholdt J., Li Y., Coskun M., Seidelin J.B., Sandelin A., Nielsen O.H. Relation between NOD2 genotype and changes in innate signaling in Crohn’s disease on mRNA and miRNA levels. NPJ Genom. Med. 2017;2:3. doi: 10.1038/s41525-016-0001-4.
    1. Molinié F., Gower-Rousseau C., Yzet T., Merle V., Grandbastien B., Marti R., Lerebours E., Dupas J.L., Colombel J.F., Salomez J.L., et al. Opposite evolution in incidence of Crohn’s disease and ulcerative colitis in Northern France (1988–1999) Gut. 2004;53:843–848. doi: 10.1136/gut.2003.025346.
    1. Maiti R., Van Domselaar G.H., Zhang H., Wishart D.S. SuperPose: A simple server for sophisticated structural superposition. Nucleic Acids Res. 2004;117:761–771. doi: 10.1093/nar/gkh477.
    1. Kircher M., Witten D.M., Jain P., O’Roak B.J., Cooper G.M., Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014;46:310–315. doi: 10.1038/ng.2892.
    1. Ng P.C., Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11:863–874. doi: 10.1101/gr.176601.
    1. Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat. Methods. 2010;7:248–249. doi: 10.1038/nmeth0410-248.

Source: PubMed

3
구독하다