Acute Effects of Insulin on Cardiac Function in Patients with Diabetes Mellitus: Clinical Applicability and Feasibility

Deeb Daoud Naccache, Sergey Yalonetsky, Ronen Bar-Yoseph, Deeb Daoud Naccache, Sergey Yalonetsky, Ronen Bar-Yoseph

Abstract

Background: Insulin promotes glucose consumption as the main cardiac energy source, while increasing myocardial efficiency. The short-term effects of insulin on cardiac function and its potential curative role in an acute diabetological cardiology setting remain unknown. Our study evaluated the role of acute insulin administration in the diabetic heart, its corresponding effective blood insulin level, and the time-course applicability of insulin treatment in a routine clinical setting.

Methods: We evaluated a case series of six male (48.1 ± 4.9 y/o) patients with controlled diabetes (HbA1c of 6.6 ± 0.3%) and disease duration of 14.4 ± 6.7 yr. Each subject was evaluated for glucose homeostasis, as well as hemodynamic and echocardiographic (systolic and diastolic) parameters at three points: baseline followed by two successive insulin loads in euglycemic hyperinsulinemic clamp study. Results were analysed using Student's t-test.

Results: The first insulin load led to a physiologic blood insulin level of 145 ± 36 μU/ml, and both systolic (7 mmHg) blood pressure and diastolic (4 mmHg) blood pressure decreased significantly. Left ventricular fractional shortening (LVFS) increased significantly by 11.8%. Diastolic function parameters of mitral annulus movement of the A' wave increased relative to baseline by 20.0% (27.8% under the second insulin load), A' medial increased relative to baseline by 30%, and A' lateral increased relative to baseline by 17%, displayed by tissue Doppler imaging.

Conclusions: Insulin acutely affected the diabetic heart at a physiologic level within a 2 h time course. Insulin mainly increased left ventricular systolic function and, to a second degree, improved left ventricular diastolic functions and atrial systole in diabetic subjects. These results may facilitate the development of insulin-based acute treatment in diabetic patients with cardiac morbidity. This trial is registered with NCT02962921.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2020 Deeb Daoud Naccache et al.

References

    1. Adeghate E. Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: a short review. Molecular and Cellular Biochemistry. 2004;261(1):187–191. doi: 10.1023/b:mcbi.0000028755.86521.11.
    1. Francis G. S. Diabetic cardiomyopathy: fact or fiction? Heart. 2001;85(3):247–248. doi: 10.1136/heart.85.3.247.
    1. Kitzman D. W., Gardin J. M., Gottdiener J. S., et al. Importance of heart failure with preserved systolic function in patients ≥65 years of age. The American Journal of Cardiology. 2001;87(4):413–419. doi: 10.1016/s0002-9149(00)01393-x.
    1. McMurray J. J., Stewart S. Heart failure: epidemiology, aetiology, and prognosis of heart failure. Heart. 2000;83(5):596–602. doi: 10.1136/heart.83.5.596.
    1. Rubler S., Dlugash J., Yuceoglu Y. Z., Kumral T., Branwood A. W., Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. The American Journal of Cardiology. 1972;30(6):595–602. doi: 10.1016/0002-9149(72)90595-4.
    1. Gutierrez C., Blanchard D. G. Diastolic heart failure: challenges of diagnosis and treatment. American Family Physician. 2004;69(69):2609–2616.
    1. Poornima I. G., Parikh P., Shannon R. P. Diabetic cardiomyopathy. Circulation Research. 2006;98(5):596–605. doi: 10.1161/01.res.0000207406.94146.c2.
    1. Fein F., Malhotra A., Strobeck J. E., Capasso J. M., Scheuer J., Sonnenblick E. H. Reversibility of diabetic cardiomyopathy with insulin in rats. The American Journal of Cardiology. 1981;47(2):p. 414. doi: 10.1016/0002-9149(81)90732-3.
    1. Duvernoy C. S., Raffel D. M., Swanson S. D., et al. Left ventricular metabolism, function, and sympathetic innervation in men and women with type 1 diabetes. Journal of Nuclear Cardiology. 2016;23(5):960–969. doi: 10.1007/s12350-016-0434-2.
    1. Iliadis F., Kadoglou N., Didangelos T. Insulin and the heart. Diabetes Research and Clinical Practice. 2011;93(1):S86–S91. doi: 10.1016/s0168-8227(11)70019-5.
    1. Hiramatsu K., Ohara N., Shigematsu S., et al. Left ventricular filling abnormalities in non-insulin-dependent diabetes mellitus and improvement by a short-term glycemic control. The American Journal of Cardiology. 1992;70(13):1185–1189. doi: 10.1016/0002-9149(92)90053-2.
    1. Whitlow P. L., Rogers W. J., Smith L. R., et al. Enhancement of left ventricular function by glucose-insulin-potassium infusion in acute myocardial infarction. The American Journal of Cardiology. 1982;49(4):811–820. doi: 10.1016/0002-9149(82)91963-4.
    1. Sasso F. C., Carbonara O., Cozzolino D., et al. Effects of insulin-glucose infusion on left ventricular function at rest and during dynamic exercise in healthy subjects and noninsulin dependent diabetic patients. Journal of the American College of Cardiology. 2000;36(1):219–226. doi: 10.1016/s0735-1097(00)00717-8.
    1. Chaudhuri A., Janicke D., Wilson M. F., et al. Anti-inflammatory and profibrinolytic effect of insulin in acute ST-segment-elevation myocardial infarction. Circulation. 2004;109(7):849–854. doi: 10.1161/01.cir.0000116762.77804.fc.
    1. Marfella R., Sasso F. C., Siniscalchi M., et al. Peri-procedural tight glycemic control during early percutaneous coronary intervention is associated with a lower rate of in-stent restenosis in patients with acute ST-elevation myocardial infarction. The Journal of Clinical Endocrinology & Metabolism. 2012;97(8):2862–2871. doi: 10.1210/jc.2012-1364.
    1. Jonassen A. K., Sack M. N., Mjøs O. D., Yellon D. M. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circulation Research. 2001;89(12):1191–1198. doi: 10.1161/hh2401.101385.
    1. Sundell J., Nuutila P., Laine H., et al. Dose-dependent vasodilating effects of insulin on adenosine-stimulated myocardial blood flow. Diabetes. 2002;51(4):1125–1130. doi: 10.2337/diabetes.51.4.1125.
    1. Langouche L., Vanhorebeek I., Vlasselaers D., et al. Intensive insulin therapy protects the endothelium of critically ill patients. Journal of Clinical Investigation. 2005;115(8):2277–2286. doi: 10.1172/jci25385.
    1. Aljada A., Dandona P. Effect of insulin on human aortic endothelial nitric oxide synthase. Metabolism. 2000;49(2):147–150. doi: 10.1016/s0026-0495(00)91039-4.
    1. DeFronzo R. A., Tobin J. D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. American Journal of Physiology-Endocrinology and Metabolism. 1979;237(3):E214–E223. doi: 10.1152/ajpendo.1979.237.3.e214.
    1. Rizza R. A., Mandarino L. J., Gerich J. E. Dose-response characteristics for effects of insulin on production and utilization of glucose in man. American Journal of Physiology-Endocrinology and Metabolism. 1981;240(6):E630–E639. doi: 10.1152/ajpendo.1981.240.6.e630.
    1. Cohen P., Harel C., Bergman R., et al. Insulin resistance and acanthosis nigricans: evidence for a postbinding defect in vivo. Metabolism. 1990;39(10):1006–1011. doi: 10.1016/0026-0495(90)90158-9.
    1. Cohen P., Barzilai N., Barzilai D., Karnieli E. Correlation between insulin clearance and insulin responsiveness: studies in normal, obese, hyperthyroid, and Cushing’s syndrome patients. Metabolism. 1986;35(8):744–749. doi: 10.1016/0026-0495(86)90242-8.
    1. Oh J. K., Appleton C. P., Hatle L. K., Nishimura R. A., Seward J. B., Tajik A. J. The noninvasive assessment of left ventricular diastolic function with two-dimensional and Doppler echocardiography. Journal of the American Society of Echocardiography. 1997;10(3):246–270. doi: 10.1016/s0894-7317(97)70062-2.
    1. Khouri S. J., Maly G. T., Suh D. D., Walsh T. E. A practical approach to the echocardiographic evaluation of diastolic function. Journal of the American Society of Echocardiography. 2004;17(3):290–297. doi: 10.1016/j.echo.2003.08.012.
    1. Kahn J. K., Zola B., Juni J. E., Vinik A. I. Radionuclide assessment of left ventricular diastolic filling in diabetes mellitus with and without cardiac autonomic neuropathy. Journal of the American College of Cardiology. 1986;7(6):1303–1309. doi: 10.1016/s0735-1097(86)80150-4.
    1. Khankirawatana B., Khankirawatana S., Peterson B., Mahrous H., Porter T. R. Peak atrial systolic mitral annular velocity by Doppler tissue reliably predicts left atrial systolic function. Journal of the American Society of Echocardiography. 2004;17(4):353–360. doi: 10.1016/j.echo.2003.12.023.
    1. Brandis K. Insensible water loss. .
    1. Mak G. S., Sawaya H., Khan A. M., et al. Effects of subacute dietary salt intake and acute volume expansion on diastolic function in young normotensive individuals. European Heart Journal—Cardiovascular Imaging. 2013;14(11):1092–1098. doi: 10.1093/ehjci/jet036.
    1. Perley M. J., Kipnis D. M. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. Journal of Clinical Investigation. 1967;46(12):1954–1962. doi: 10.1172/jci105685.
    1. Erdmann J., Pöhnl K., Mayr M., et al. Disturbances of basal and postprandial insulin secretion and clearance in obese patients with type 2 diabetes mellitus. Hormone and Metabolic Research. 2012;44(1):60–69. doi: 10.1055/s-0031-1295414.
    1. Donga E., Dekkers O. M., Corssmit E. P. M., Romijn J. A. Insulin resistance in patients with type 1 diabetes assessed by glucose clamp studies: systematic review and meta-analysis. European Journal of Endocrinology. 2015;173(1):101–109. doi: 10.1530/eje-14-0911.
    1. Baron A. D., Laakso M., Brechtel G., Edelman S. V. Mechanism of insulin resistance in insulin-dependent diabetes mellitus: a major role for reduced skeletal muscle blood flow. The Journal of Clinical Endocrinology & Metabolism. 1991;73(3):637–643. doi: 10.1210/jcem-73-3-637.
    1. Agashe S., Petak S. Cardiac autonomic neuropathy in diabetes mellitus. Methodist DeBakey Cardiovascular Journal. 2018;14(4):251–256.
    1. Grover A., Padginton C., Wilson M. F., Sung B. H., Izzo J. L., Dandona P. Insulin attenuates norepinephrine- induced venoconstriction. Hypertension. 1995;25(4):779–784. doi: 10.1161/01.hyp.25.4.779.
    1. Vincent M. A., Barrett E. J., Lindner J. R., Clark M. G., Rattigan S. Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. American Journal of Physiology—Endocrinology and Metabolism. 2003;285(1):123–129. doi: 10.1152/ajpendo.00021.2003.
    1. Díaz R., Goyal A., Mehta S. R., et al. Glucose-insulin-potassium therapy in patients with ST-segment elevation myocardial infarction. JAMA. 2007;298(20):2399–2405. doi: 10.1001/jama.298.20.2399.
    1. Mamas M. A., Neyses L., Fath-Ordoubadi F. A meta-analysis of glucose-insulin-potassium therapy for treatment of acute myocardial infarction. Experimental and Clinical Cardiology. 2010;15(2):e20–e24.
    1. Zinman B., Wanner C., Lachin J. M., et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. New England Journal of Medicine. 2015;373(22):2117–2128. doi: 10.1056/nejmoa1504720.
    1. Marso S. P., Daniels G. H., Brown-Frandsen K., et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine. 2016;375(4):311–322. doi: 10.1056/nejmoa1603827.
    1. Wiviott S. D., Raz I., Bonaca M. P., et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine. 2019;380(4):347–357. doi: 10.1056/nejmoa1812389.

Source: PubMed

3
구독하다