Ratio and difference of the cross-sectional area of median nerve to ulnar nerve in diagnosing carpal tunnel syndrome: a case control study

Yi-Wei Chang, Tsung-Cheng Hsieh, I-Shiang Tzeng, Valeria Chiu, Pei-Jung Huang, Yi-Shiung Horng, Yi-Wei Chang, Tsung-Cheng Hsieh, I-Shiang Tzeng, Valeria Chiu, Pei-Jung Huang, Yi-Shiung Horng

Abstract

Background: To evaluate the diagnostic accuracy of the median-to-ulnar nerve ratio (MUR) and the median-to-ulnar nerve difference (MUD) in patients with carpal tunnel syndrome (CTS).

Methods: In this study, 32 patients with CTS and 32 healthy volunteers were evaluated. All participants received a series of tests and ultrasound examination for the evaluation of the following criteria: cross-sectional area of the median nerve at the pisiform level (CSA-P), swelling ratio (SR), MUR, MUD, and flattening ratio (FR).

Results: CSA-P, SR, MUR, and MUD were all significantly larger in the patients with CTS than in the healthy volunteers. The areas under the receiver operator characteristic curves of MUD, MUR, CSA-P, and SR were 0.78, 0.75, 0.70, and 0.61 respectively. MUD had higher sensitivity (84%) than MUR, CSA-P, and SR (sensitivity: 63, 63, and 53%, respectively).

Conclusions: By using the ulnar nerve area at the pisiform level as an internal control parameter, the MUD and MUR methods showed higher diagnostic accuracy than SR in patients with CTS. Further application of these methods in research and clinical settings is recommended.

Trial registration: Clinicaltrial.gov NCT03033173. Registered 18 January 2017. Retrospectively registered.

Keywords: Carpal tunnel syndrome; Median nerve; Median nerve entrapment; Ulnar nerve; Ultrasound.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Cross-sectional area of the median nerve (large encircled area) and the ulnar nerve (small encircled area) at the pisiform level; P: pisiform bone; S: scaphoid bone
Fig. 2
Fig. 2
Median nerve cross sectional area at the distal radioulnar joint level (U: Ulnar bone; R: Radius bone)
Fig. 3
Fig. 3
Long axis and short axis of median nerve at the pisiforms level (P: pisiform bone; S: scaphoid bone)

References

    1. Ibrahim I, Khan W, Goddard N, Smitham P. Suppl 1: carpal tunnel syndrome: a review of the recent literature. Open Orthop J. 2012;6:69.
    1. Uchiyama S, Itsubo T, Nakamura K, Kato H, Yasutomi T, Momose T. Current concepts of carpal tunnel syndrome: pathophysiology, treatment, and evaluation. J Orthop Sci. 2010;15(1):1–13.
    1. MacDermid JC, Doherty T. Clinical and electrodiagnostic testing of carpal tunnel syndrome: a narrative review. J Orthop Sports Phys Ther. 2004;34(10):565–588.
    1. Jablecki C, Andary M, Floeter M, Miller R, Quartly C, Vennix M, Wilson J. Practice parameter: electrodiagnostic studies in carpal tunnel syndrome report of the American Association of Electrodiagnostic Medicine, American Academy of Neurology, and the American Academy of physical medicine and rehabilitation. Neurology. 2002;58(11):1589–1592.
    1. Lew HL, Date ES, Pan SS, Wu P, Ware PF, Kingery WS. Sensitivity, specificity, and variability of nerve conduction velocity measurements in carpal tunnel syndrome. Arch Phys Med Rehabil. 2005;86(1):12–16.
    1. Hobson-Webb LD, Massey JM, Juel VC, Sanders DB. The ultrasonographic wrist-to-forearm median nerve area ratio in carpal tunnel syndrome. Clin Neurophysiol. 2008;119(6):1353–1357.
    1. Redmond MD, Rivner MH. False positive electrodiagnostic tests in carpal tunnel syndrome. Muscle Nerve. 1988;11(5):511–518.
    1. Hunderfund ANL, Boon AJ, Mandrekar JN, Sorenson EJ. Sonography in carpal tunnel syndrome. Muscle Nerve. 2011;44(4):485–491.
    1. Horng Y-S, Chang H-C, Lin K-E, Guo Y-L, Liu D-H, Wang J-D. Accuracy of ultrasonography and magnetic resonance imaging in diagnosing carpal tunnel syndrome using rest and grasp positions of the hands. J Hand Surg. 2012;37(8):1591–1598.
    1. Keberle M, Jenett M, Kenn W, Reiners K, Peter M, Haerten R, Hahn D. Technical advances in ultrasound and MR imaging of carpal tunnel syndrome. Eur Radiol. 2000;10(7):1043–1050.
    1. Roll SC, Case-Smith J, Evans KD. Diagnostic accuracy of ultrasonography vs. electromyography in carpal tunnel syndrome: a systematic review of literature. Ultrasound Med Biol. 2011;37(10):1539–1553.
    1. Tai T-W, Wu C-Y, Su F-C, Chern T-C, Jou I-M. Ultrasonography for diagnosing carpal tunnel syndrome: a meta-analysis of diagnostic test accuracy. Ultrasound Med Biol. 2012;38(7):1121–1128.
    1. McDonagh C, Alexander M, Kane D. The role of ultrasound in the diagnosis and management of carpal tunnel syndrome: a new paradigm. Rheumatology. 2014:keu275.
    1. Cartwright MS, Shin HW, Passmore LV, Walker FO. Ultrasonographic reference values for assessing the normal median nerve in adults. J Neuroimaging. 2009;19(1):47–51.
    1. Cartwright MS, Shin HW, Passmore LV, Walker FO. Ultrasonographic findings of the normal ulnar nerve in adults. Arch Phys Med Rehabil. 2007;88(3):394–396.
    1. Visser LH, Smidt MH, Lee ML. Diagnostic value of wrist median nerve cross sectional area versus wrist-to-forearm ratio in carpal tunnel syndrome. Clin Neurophysiol. 2008;119(12):2898–2899.
    1. Mhoon JT, Juel VC, Hobson-Webb LD. Median nerve ultrasound as a screening tool in carpal tunnel syndrome: correlation of cross-sectional area measures with electrodiagnostic abnormality. Muscle Nerve. 2012;46(6):861–870.
    1. Roll SC, Evans KD, Li X, Freimer M, Sommerich CM. Screening for carpal tunnel syndrome using sonography. J Ultrasound Med. 2011;30(12):1657–1667.
    1. Eom YI, Choi MH, Kim YK, Joo IS. Sonographic findings in the ulnar nerve according to the electrophysiologic stage of carpal tunnel syndrome. J Ultrasound Med. 2015;34(6):1027–1034.
    1. ATAN T, GÜNENDİ Z. Diagnostic utility of the sonographic median to ulnar nerve cross-sectional area ratio in carpal tunnel syndrome. Turkish J Med Sci. 2018;48(1):110–116.
    1. Yurdakul OV, Mesci N, Çetinkaya Y, Geler Külcü D. Diagnostic significance of ultrasonographic measurements and median-ulnar ratio in carpal tunnel syndrome: correlation with nerve conduction studies. J Clin Neurol. 2016;12(3):289–294.
    1. Braddom RL. Physical medicine and rehabilitation: Elsevier Health Sciences; 2010.
    1. Brininger TL, Rogers JC, Holm MB, Baker NA, Li Z-M, Goitz RJ. Efficacy of a fabricated customized splint and tendon and nerve gliding exercises for the treatment of carpal tunnel syndrome: a randomized controlled trial. Arch Phys Med Rehabil. 2007;88(11):1429–1435.
    1. Levine DW, Simmons BP, Koris MJ, Daltroy LH, Hohl GG, Fossel A, Katz JN. A self-administered questionnaire for the assessment of severity of symptoms and functional status in carpal tunnel syndrome. J Bone Joint Surg. 1993;75(11):1585–1592.
    1. Preston DC, Shapiro BE. Electromyography and neuromuscular disorders: clinical-Electrophysiologic correlations (expert consult - online): Elsevier Health Sciences; 2012.
    1. Kimura J. The carpal tunnel syndrome: localization of conduction abnormalities within the distal segment of the median nerve. Brain. 1979;102(3):619–635.
    1. Johnson E, Kukla R, Wongsam P, Piedmont A. Sensory latencies to the ring finger: normal values and relation to carpal tunnel syndrome. Arch Phys Med Rehabil. 1981;62(5):206–208.
    1. Buschbacher RM. Ulnar nerve motor conduction to the abductor DIGITI MINIMI1. Am J Phys Med Rehabil. 1999;78(6):S9–S14.
    1. O’Neill John M.D. Musculoskeletal Ultrasound. New York, NY: Springer New York; 2008. Introduction to Musculoskeletal Ultrasound; pp. 3–17.
    1. DeLong Elizabeth R., DeLong David M., Clarke-Pearson Daniel L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics. 1988;44(3):837.
    1. Buchberger W, Schön G, Strasser K, Jungwirth W. High-resolution ultrasonography of the carpal tunnel. J Ultrasound Med. 1991;10(10):531–537.
    1. Mondelli M, Filippou G, Gallo A, Frediani B. Diagnostic utility of ultrasonography versus nerve conduction studies in mild carpal tunnel syndrome. Arthritis Care Res. 2008;59(3):357–366.
    1. Cartwright MS, Hobson-Webb LD, Boon AJ, Alter KE, Hunt CH, Flores VH, Werner RA, Shook SJ, Thomas TD, Primack SJ. Evidence-based guideline: neuromuscular ultrasound for the diagnosis of carpal tunnel syndrome. Muscle Nerve. 2012;46(2):287–293.
    1. Duncan I, Sullivan P, Lomas F. Sonography in the diagnosis of carpal tunnel syndrome. AJR Am J Roentgenol. 1999;173(3):681–684.
    1. Mallouhi A, Pültzl P, Trieb T, Piza H, Bodner G. Predictors of carpal tunnel syndrome: accuracy of gray-scale and color Doppler sonography. Am J Roentgenol. 2006;186(5):1240–1245.
    1. Swen W, Jacobs J, Bussemaker F, De Waard J, Bijlsma J. Carpal tunnel sonography by the rheumatologist versus nerve conduction study by the neurologist. J Rheumatol. 2001;28(1):62–69.
    1. Zaidman CM, Al-Lozi M, Pestronk A. Peripheral nerve size in normals and patients with polyneuropathy: an ultrasound study. Muscle Nerve. 2009;40(6):960–966.
    1. Won SJ, Kim BJ, Park KS, Yoon JS, Choi H. Reference values for nerve ultrasonography in the upper extremity. Muscle Nerve. 2013;47(6):864–871.
    1. Altinok T, Baysal O, Karakas H, Sıgırcı A, Alkan A, Kayhan A, Yologlu S. Ultrasonographic assessment of mild and moderate idiopathic carpal tunnel syndrome. Clin Radiol. 2004;59(10):916–925.
    1. Chen S-F, Lu C-H, Huang C-R, Chuang Y-C, Tsai N-W, Chang C-C, Chang W-N: Ultrasonographic median nerve cross-section areas measured by 8-point" inching test" for idiopathic carpal tunnel syndrome: a correlation of nerve conduction study severity and duration of clinical symptoms. BMC Med Imaging 2011, 11(1):1.
    1. Klauser AS, Halpern EJ, De Zordo T, Feuchtner GM, Arora R, Gruber J, Martinoli C, Löscher WN. Carpal tunnel syndrome assessment with US: value of additional cross-sectional area measurements of the median nerve in patients versus healthy volunteers. Radiology. 2009;250(1):171–177.
    1. Chen Y-T, Williams L, Zak MJ, Fredericson M. Review of ultrasonography in the diagnosis of carpal tunnel syndrome and a proposed scanning protocol. J Ultrasound Med. 2016;35(11):2311–2324.
    1. Klauser AS, Ellah MMA, Halpern EJ, Siedentopf C, Auer T, Eberle G, Bellmann-Weiler R, Kremser C, Sojer M, Löscher WN. Sonographic cross-sectional area measurement in carpal tunnel syndrome patients: can delta and ratio calculations predict severity compared to nerve conduction studies? Eur Radiol. 2015;25(8):2419–2427.

Source: PubMed

3
구독하다