Cellular aging dynamics after acute malaria infection: A 12-month longitudinal study

Muhammad Asghar, Victor Yman, Manijeh Vafa Homann, Klara Sondén, Ulf Hammar, Dennis Hasselquist, Anna Färnert, Muhammad Asghar, Victor Yman, Manijeh Vafa Homann, Klara Sondén, Ulf Hammar, Dennis Hasselquist, Anna Färnert

Abstract

Accelerated cellular aging and reduced lifespan have recently been shown in birds chronically infected with malaria parasites. Whether malaria infection also affects cellular aging in humans has not been reported. Here, we assessed the effect of a single acute Plasmodium falciparum malaria infection on cellular aging dynamics in travelers prospectively followed over one year in Sweden. DNA and RNA were extracted from venous blood collected at the time of admission and repeatedly up to one year. Telomere length was measured using real-time quantitative PCR, while telomerase activity and CDKN2A expression were measured by reverse transcriptase (RT)-qPCR. Our results show that acute malaria infection affects cellular aging as reflected by elevated levels of CDKN2A expression, lower telomerase activity, and substantial telomere shortening during the first three months postinfection. After that CDKN2A expression declined, telomerase activity increased and telomere length was gradually restored over one year, reflecting that cellular aging was reversed. These findings demonstrate that malaria infection affects cellular aging and the underlying cellular mechanism by which pathogens can affect host cellular aging and longevity need to be elucidated. Our results urge the need to investigate whether repeated malaria infections have more pronounced and long-lasting effects on cellular aging and lifespan (similarly to what was observed in birds) in populations living in malaria endemic areas.

Keywords: Plasmodium falciparum; CDKN2A; Malaria; Telomerase; Telomeres; cellular aging.

© 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Telomere length dynamics in blood of travelers followed over one year after successful treatment of Plasmodium falciparum malaria (= 38). (a) Telomere length dynamics after single acute malaria infection in peripheral blood; each gray circle represents the telomere measurement of individual sample, solid black lines represent the mean at each sampling point, and error bars denote the 95% CI. (b) Telomere length, as predicted from the mixed models; solid gray line denotes the mean telomere length and shaded gray areas denote the 95% CI of the model predictions when adjusted for covariates. Black dots denote the observed mean telomere length at each time point (pooled data at approximate measurement day), and error bars denote the 95% CI of the mean. Number on each error bar represents the sample size at each measurement time point
Figure 2
Figure 2
Relationship between telomere length and telomerase expression in blood of subset of travelers with RNA samples (= 8, observations = 39) followed over one year after a successfully treated Plasmodium falciparum malaria infection. (a) Dynamics of telomerase expression level (log) after single acute malaria infection in peripheral blood; each gray circle represents the telomerase expression of individual sample, solid black lines represent the mean at each sampling point, and error bars denote the ± SE. (b) Pearson correlation (adjusted for cluster‐robust standard errors) between telomerase expression and telomere length. (c) Telomere length, telomerase expression level (log), and CDKN2A level (log) at the respective sampling time points. Bars represent the mean values and error bars denote the ± SE
Figure 3
Figure 3
Relationship between telomere length and telomerase expression in blood of subset of travelers with RNA samples (= 8, observations = 39) followed over one year after a successfully treated Plasmodium falciparum malaria infection. (a) Dynamics of CDKN2A level (log) after single acute malaria infection in peripheral blood; each gray circle represents the CDKN2A expression of individual sample, solid black lines represent the mean at each sampling point, and error bars denote the ± SE. (b) Pearson correlation (adjusted for cluster‐robust standard errors) between CDKN2A and telomere length

References

    1. Artandi, S. E. , & DePinho, R. A. (2010). Telomeres and telomerase in cancer. Carcinogenesis, 31, 9–18.
    1. Asghar, M. , Bensch, S. , Tarka, M. , Hansson, B. , & Hasselquist, D. (2015). Maternal and genetic factors determine early life telomere length. Proceedings of the Royal Society of London B: Biological Sciences, 282, 20142263.
    1. Asghar, M. , Hasselquist, D. , Hansson, B. , Zehtindjiev, P. , Westerdahl, H. , & Bensch, S. (2015). Chronic infection. Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds. Science, 347, 436–438.
    1. Asghar, M. , Palinauskas, V. , Zaghdoudi‐Allan, N. , Valkiunas, G. , Mukhin, A. , Platonova, E. , … Hasselquist, D. (2016). Parallel telomere shortening in multiple body tissues owing to malaria infection. Proceedings of the Royal Society of London B: Biological Sciences, 283(1836). .
    1. Atzmon, G. , Cho, M. , Cawthon, R. M. , Budagov, T. , Katz, M. , Yang, X. , … Suh, Y. (2010). Evolution in health and medicine Sackler colloquium: genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proceedings of the National Academy of Sciences of the United States of America, 107(Suppl 1), 1710–1717.
    1. van de Berg, P. J. , Griffiths, S. J. , Yong, S. L. , Macaulay, R. , Bemelman, F. J. , Jackson, S. , … van Lier, R. A. (2010). Cytomegalovirus infection reduces telomere length of the circulating T cell pool. Journal of Immunology, 184, 3417–3423.
    1. Blackburn, E. H. , & Epel, E. S. (2012). Telomeres and adversity: Too toxic to ignore. Nature, 490, 169–171.
    1. Blackburn, E. H. , Epel, E. S. , & Lin, J. (2015). Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science, 350, 1193–1198.
    1. Burd, C. E. , Sorrentino, J. A. , Clark, K. S. , Darr, D. B. , Krishnamurthy, J. , Deal, A. M. , … Sharpless, N. E. (2013). Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)‐luciferase model. Cell, 152, 340–351.
    1. Cawthon, R. M. (2002). Telomere measurement by quantitative PCR. Nucleic Acids Research, 30, e47.
    1. Cohen, S. , Janicki‐Deverts, D. , Turner, R. B. , Casselbrant, M. L. , Li‐Korotky, H. S. , Epel, E. S. , & Doyle, W. J. (2013). Association between telomere length and experimentally induced upper respiratory viral infection in healthy adults. JAMA, 309, 699–705.
    1. Daniali, L. , Benetos, A. , Susser, E. , Kark, J. D. , Labat, C. , Kimura, M. , … Aviv, A. (2013). Telomeres shorten at equivalent rates in somatic tissues of adults. Nature Communications, 4, 1597.
    1. Doolan, D. L. , Dobano, C. , & Baird, J. K. (2009). Acquired immunity to malaria. Clinical Microbiology Reviews, 22, 13–36, Table of Contents.
    1. Durrleman, S. , & Simon, R. (1989). Flexible regression models with cubic splines. Statistics in Medicine, 8, 551–561.
    1. Epel, E. S. , Blackburn, E. H. , Lin, J. , Dhabhar, F. S. , Adler, N. E. , Morrow, J. D. , & Cawthon, R. M. (2004). Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences of the United States of America, 101, 17312–17315.
    1. Gavazzi, G. , & Krause, K. H. (2002). Ageing and infection. The Lancet Infectious Diseases, 2, 659–666.
    1. Gianesin, K. , Noguera‐Julian, A. , Zanchetta, M. , Del Bianco, P. , Petrara, M. R. , Freguja, R. , … De Rossi, A. (2016). Premature aging and immune senescence in HIV‐infected children. Aids, 30, 1363–1373.
    1. Harrell, J. F. (2001). Regression modeling strategies: With applications to linear models, logistic regression, and survival analysis. New York, NY: Springer.
    1. Ilmonen, P. , Kotrschal, A. , & Penn, D. J. (2008). Telomere attrition due to infection. PLoS ONE, 3, e2143.
    1. Jeck, W. R. , Siebold, A. P. , & Sharpless, N. E. (2012). Review: A meta‐analysis of GWAS and age‐associated diseases. Aging Cell, 11, 727–731.
    1. Karell, P. , Bensch, S. , Ahola, K. , & Asghar, M. (2017). Pale and dark morphs of tawny owls show different patterns of telomere dynamics in relation to disease status. Proceedings of the Royal Society of London B: Biological Sciences, 284(1859). .
    1. Koppelstaetter, C. , Schratzberger, G. , Perco, P. , Hofer, J. , Mark, W. , Ollinger, R. , … Mayer, G. (2008). Markers of cellular senescence in zero hour biopsies predict outcome in renal transplantation. Aging Cell, 7, 491–497.
    1. Laird, N. M. , & Ware, J. H. (1982). Random‐effects models for longitudinal data. Biometrics, 38, 963–974.
    1. Leung, J. M. , Fishbane, N. , Jones, M. , Morin, A. , Xu, S. , Liu, J. C. , … Man, S. F. (2017). Longitudinal study of surrogate aging measures during human immunodeficiency virus seroconversion. Aging, 9, 687–705.
    1. Li, H. , Collado, M. , Villasante, A. , Strati, K. , Ortega, S. , Canamero, M. , … Serrano, M. (2009). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature, 460, 1136–1139.
    1. Lin, J. , Cheon, J. , Brown, R. , Coccia, M. , Puterman, E. , Aschbacher, K. , … Blackburn, E. H. (2016). Systematic and cell type‐specific telomere length changes in subsets of lymphocytes. Journal of Immunology Research, 2016, 5371050.
    1. Martin, N. , Beach, D. , & Gil, J. (2014). Ageing as developmental decay: Insights from p16(INK4a.). Trends in Molecular Medicine, 20, 667–674.
    1. Needham, B. L. , Rehkopf, D. , Adler, N. , Gregorich, S. , Lin, J. , Blackburn, E. H. , & Epel, E. S. (2015). Leukocyte telomere length and mortality in the National Health and Nutrition Examination Survey, 1999‐2002. Epidemiology, 26, 528–535.
    1. Pathai, S. , Lawn, S. D. , Gilbert, C. E. , McGuinness, D. , McGlynn, L. , Weiss, H. A. , … Shiels, P. G. (2013). Accelerated biological ageing in HIV‐infected individuals in South Africa: A case‐control study. Aids, 27, 2375–2384.
    1. Robinson, M. W. , McGuinness, D. , Swann, R. , Barclay, S. , Mills, P. R. , Patel, A. H. , … Shiels, P. G. (2013). Non cell autonomous upregulation of CDKN2 transcription linked to progression of chronic hepatitis C disease. Aging Cell, 12, 1141–1143.
    1. Rode, L. , Nordestgaard, B. G. , & Bojesen, S. E. (2015). Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population. Journal of the National Cancer Institute, 107, djv074.
    1. Sandhu, C. , Peehl, D. M. , & Slingerland, J. (2000). p16INK4A mediates cyclin dependent kinase 4 and 6 inhibition in senescent prostatic epithelial cells. Cancer Research, 60, 2616–2622.
    1. Shiels, P. G. (2010). Improving precision in investigating aging: Why telomeres can cause problems. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 65, 789–791.
    1. Sorrentino, J. A. , Sanoff, H. K. , & Sharpless, N. E. (2014). Defining the toxicology of aging. Trends in Molecular Medicine, 20, 375–384.
    1. TMIH (2014). Severe Malaria. Tropical Medicine and International Health, 19, 7–131. .
    1. Videvall, E. , Cornwallis, C. K. , Palinauskas, V. , Valkiunas, G. , & Hellgren, O. (2015). The avian transcriptome response to malaria infection. Molecular Biology and Evolution, 32, 1255–1267.
    1. WHO (2016). World Malaria report. World Health Organization.
    1. Zannetti, C. , Mondini, M. , De Andrea, M. , Caposio, P. , Hara, E. , Peters, G. , … Landolfo, S. (2006). The expression of p16INK4a tumor suppressor is upregulated by human cytomegalovirus infection and required for optimal viral replication. Virology, 349, 79–86.

Source: PubMed

3
구독하다