Clinical characteristics and outcomes of critically ill mechanically ventilated COVID-19 patients receiving interleukin-6 receptor antagonists and corticosteroid therapy: a preliminary report from a multinational registry

Marwa Amer, Ahmed M Kamel, Mohammed Bawazeer, Khalid Maghrabi, Abid Butt, Talal Dahhan, Eiad Kseibi, Syed Moazzum Khurshid, Mohammed Abujazar, Razan Alghunaim, Muath Rabee, Maal Abualkhair, Ali Al-Janoubi, Abeer Turki AlFirm, Ognjen Gajic, Allan J Walkey, Jarrod M Mosier, Igor Borisovich Zabolotskikh, Oscar Y Gavidia, Santiago Yus- Teruel, Michael A Bernstein, Karen Boman, Vishakha K Kumar, Vikas Bansal, Rahul Kashyap, Society of Critical Care Medicine Discovery Viral Infection and Respiratory Illness Universal Study (VIRUS): COVID-19 Registry Investigator Group, Marwa Amer, Ahmed M Kamel, Mohammed Bawazeer, Khalid Maghrabi, Abid Butt, Talal Dahhan, Eiad Kseibi, Syed Moazzum Khurshid, Mohammed Abujazar, Razan Alghunaim, Muath Rabee, Maal Abualkhair, Ali Al-Janoubi, Abeer Turki AlFirm, Ognjen Gajic, Allan J Walkey, Jarrod M Mosier, Igor Borisovich Zabolotskikh, Oscar Y Gavidia, Santiago Yus- Teruel, Michael A Bernstein, Karen Boman, Vishakha K Kumar, Vikas Bansal, Rahul Kashyap, Society of Critical Care Medicine Discovery Viral Infection and Respiratory Illness Universal Study (VIRUS): COVID-19 Registry Investigator Group

Abstract

Background: Interleukin-6 receptor antagonists (IL-6RAs) and steroids are emerging immunomodulatory therapies for severe and critical coronavirus disease (COVID-19). In this preliminary report, we aim to describe the epidemiology, clinical characteristics, and outcomes of adult critically ill COVID-19 patients, requiring invasive mechanical ventilation (iMV), and receiving IL-6RA and steroids therapy over the last 11 months.

Materials and methods: International, multicenter, cohort study derived from Viral Infection and Respiratory Illness University Study registry and conducted through Discovery Network, Society of Critical Care Medicine. Data were collected between March 01, 2020, and January 10, 2021.

Results: Of 860 patients who met eligibility criteria, 589 received steroids, 170 IL-6RAs, and 101 combinations. Patients who received IL-6RAs were younger (median age of 57.5 years vs. 61.1 and 61.8 years in the steroids and combination groups, respectively). The median C-reactive protein level was > 75 mg/L, indicating a hyperinflammatory phenotype. The median daily steroid dose was 7.5 mg dexamethasone or equivalent (interquartile range: 6-14 mg); 80.8% and 19.2% received low-dose and high-dose steroids, respectively. Of the patients who received IL-6RAs, the majority received one dose of tocilizumab and sarilumab (dose range of 600-800 mg for tocilizumab and 200-400 mg for sarilumab). Regarding the timing of administration, we observed that steroid and IL-6RA administration on day 0 of ICU admission was only 55.6% and 39.5%, respectively. By day 28, when compared with steroid use alone, IL-6RA use was associated with an adjusted incidence rate ratio (aIRR) of 1.12 (95% confidence interval [CI] 0.88, 1.4) for ventilator-free days, while combination therapy was associated with an aIRR of 0.83 (95% CI 0.6, 1.14). IL-6RA use was associated with an adjusted odds ratio (aOR) of 0.68 (95% CI 0.44, 1.07) for the 28-day mortality rate, while combination therapy was associated with an aOR of 1.07 (95% CI 0.67, 1.70). Liver dysfunction was higher in IL-6RA group (p = 0.04), while the bacteremia rate did not differ among groups.

Conclusions: Discordance was observed between the registry utilization patterns (i.e., timing of steroids and IL-6RA administration) and new evidence from the recent randomized controlled trials and guideline recommendations. These data will help us to identify areas of improvement in prescribing patterns and enhance our understanding of IL-6RA safety with different steroid regimens. Further studies are needed to evaluate the drivers of hospital-level variation and their impact on clinical outcomes. Trial registration ClinicalTrials.gov: NCT04486521. Registered on July 2020.

Keywords: Coronavirus disease 2019; Critical care; Interleukin-6; Interleukin-6 receptor antagonist; Invasive mechanical ventilation; Steroid.

Conflict of interest statement

Drs. Kumar’s, Walkey’s, and Kashyap’s institutions received funding from the Gordon and Betty Moore Foundation. Drs. Kumar’s and Kashyap’s institutions received funding from Janssen Research & Development, LLC.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart for data extraction from VIRUS database. DNR do-not-resuscitate order, ICU intensive care unit, iMV invasive mechanical ventilation, IL6-RAs interleukin-6 receptor antagonists, VIRUS Viral Infection and Respiratory Illness University Study registry

References

    1. Rizvi MS, Gallo De Moraes A. New decade, old debate: blocking the cytokine pathways in infection-induced cytokine cascade. Crit Care Explor. 2021;3(3):e0364. doi: 10.1097/CCE.0000000000000364.
    1. Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi: 10.1016/j.ijantimicag.2020.105954.
    1. Moore J, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473–474. doi: 10.1126/science.abb8925.
    1. Amer M, Bawazeer M, Dahhan T, Kseibi E, Butt A, Abujazar M, et al. The current use of anti-IL6 and corticosteroids in COVID-19 patients with cytokine-release syndrome. Saudi Crit Care J. 2020;4(5):21–24. doi: 10.4103/sccj.sccj_38_20.
    1. Parr JB. Time to reassess tocilizuma’s role in COVID-19 pneumonia. JAMA Intern Med. 2021;181(1):12–15. doi: 10.1001/jamainternmed.2020.6557.
    1. Rubin EJ, Longo DL, Baden LR. Interleukin-6 receptor inhibition in COVID-19—cooling the inflammatory soup. N Engl J Med. 2021;384(16):1564–1565. doi: 10.1056/NEJMe2103108.
    1. RECOVERY Collaborative Group. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med. 2021;384(8):693–704. doi: 10.1056/NEJMoa2021436.
    1. REMAP-CAP Investigators. Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, et al. Interleukin-6 receptor antagonists in critically ill patients with Covid-19. N Engl J Med. 2021;384(16):1491–1502. doi: 10.1056/NEJMoa2100433.
    1. RECOVERY Collaborative Group. Horby PW, Pessoa-Amorim G, et al. Tocilizumab’ in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397(10285):1637–1645. doi: 10.1016/S0140-6736(21)00676-0.
    1. COVID-19 real-time learning network. IDSA treatment guideline for COVID-19. 2021. . Accessed 17 Mar 2021.
    1. NIH guideline for COVID-19. 2021. . Accessed 17 Mar 2021.
    1. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Domingo P, Mur I, Mateo GM, del Mar Gutierrez M, Pomar V, et al. Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19: a meta-analysis. JAMA. 2021;326(6):499. doi: 10.1001/jama.2021.11330.
    1. Rochwerg B, Agarwal A, Siemieniuk RA, Agoritsas T, Lamontagne F, Askie L, et al. A living WHO guideline on drugs for covid-19. BMJ. 2020;370:m3379. doi: 10.1136/bmj.m3379.
    1. Albuquerque AM, Tramujas L, Sewanan LR, Brophy JM. Tocilizumab in COVID-19—a Bayesian reanalysis of RECOVERY. medRxiv. 2021 doi: 10.1101/2021.06.15.21258966.
    1. Garcia MA, Johnson SW, Sisson EK, Sheldrick CR, Kumar VK, Boman K, et al. Variation in use of anti-viral and anti-inflammatory medications in patients hospitalized with COVID-19: results from the International Viral Infection and Respiratory Illness Universal Study (VIRUS) Am J Respir Crit Care Med. 2021;203(9):A3839. doi: 10.1164/rccm.202011-4168ED.
    1. Walkey AJ, Kumar VK, Harhay MO, Bolesta S, Gajic O, et al. The viral infection and respiratory illness universal study (VIRUS): an international registry of coronavirus 2019-related critical illness. Crit Care Explor. 2020;2(4):e0113. doi: 10.1097/CCE.0000000000000113.
    1. Walkey AJ, Sheldrick RC, Kashyap R, Kumar VK, Boman K, Bolesta S, et al. Guiding principles for the conduct of observational critical care research for coronavirus disease 2019 pandemics and beyond: the society of critical care medicine discovery viral infection and respiratory illness universal study registry. Crit Care Med. 2020;48(11):e1038–e1044. doi: 10.1097/CCM.0000000000004572.
    1. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495–1499. doi: 10.1016/j.ijsu.2014.07.013.
    1. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. doi: 10.1136/bmj.i4919.
    1. Villar J, Ferrando C, Martínez D, Ambrós A, Muñoz T, Soler JA, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267–276. doi: 10.1016/S2213-2600(19)30417-5.
    1. Chaudhuri D, Sasaki K, Karkar A, Sharif S, Lewis K, Mammen MJ, et al. Corticosteroids in COVID-19 and non-COVID-19 ARDS: a systematic review and meta-analysis. Intensive Care Med. 2021;47(5):521–537. doi: 10.1007/s00134-021-06394-2.
    1. Yehya N, Harhay MO, Curley MAQ, Schoenfeld DA, Reeder RW. Reappraisal of ventilator-free days in critical care research. Am J Respir Crit Care Med. 2019;200(7):828–836. doi: 10.1164/rccm.201810-2050CP.
    1. Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11(5):550–560. doi: 10.1097/00001648-200009000-00011.
    1. Almirall D, Griffin BA, McCaffrey DF, Ramchand R, Yuen RA, Murphy SA. Time-varying effect moderation using the structural nested mean model: estimation using inverse-weighted regression with residuals. Stat Med. 2014;33(20):3466–3487. doi: 10.1002/sim.5892.
    1. Vail EA, Gershengorn HB, Wunsch H, Walkey AJ. Attention to immortal time bias in critical care research. Am J Respir Crit Care Med. 2021;203(10):1222–1229. doi: 10.1164/rccm.202008-3238CP.
    1. Angriman F, Ferreyro BL, Burry L, Fan E, Ferguson ND, Husain S, et al. Interleukin-6 receptor blockade in patients with COVID-19: placing clinical trials into context. Lancet Respir Med. 2021;9(6):655–664. doi: 10.1016/S2213-2600(21)00139-9.
    1. Brosnahan SB, Chen XJC, Chung J, Altshuler D, Islam S, Thomas SV, et al. Low-dose tocilizumab with high-dose corticosteroids in patients hospitalized for COVID-19 hypoxic respiratory failure improves mortality without increased infection risk. Ann Pharmacother. 2021 doi: 10.1177/10600280211028882.
    1. Arabi YM, Mandourah Y, Al-Hameed F, Sindi AA, Almekhlafi GA, Hussein MA, et al. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am J Respir Crit Care Med. 2018;197(6):757–767. doi: 10.1164/rccm.201706-1172OC.
    1. Butler E, Munch MW, Venkatesh B. Time for tocilizumab in COVID-19? Intensive Care Med. 2021;47(6):692–694. doi: 10.1007/s00134-021-06441-y.
    1. Nicastri E, Petrosillo N, Ascoli Bartoli T, Lepore L, Mondi A, Palmieri F, et al. National institute for the infectious diseases “L. Spallanzani”, IRCCS recommendations for COVID-19 clinical management. Infect Dis Rep. 2020;12(1):8543. doi: 10.4081/idr.2020.8543.
    1. Monedero P, Gea A, Castro P, Candela-Toha AM, Hernández-Sanz ML, Arruti E, et al. Early corticosteroids are associated with lower mortality in critically ill patients with COVID-19: a cohort study. Crit Care. 2021;25(1):2. doi: 10.1186/s13054-020-03422-3.
    1. Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG, Veiga VC, et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: the CoDEX randomized clinical trial. JAMA. 2020;324(13):1307–1316. doi: 10.1001/jama.2020.17021.
    1. Munch MW, Myatra SN, et al. Dexamethasone 12 mg versus 6 mg for patients with COVID-19 and severe hypoxia: an international, randomized, blinded trial. medRxiv. 2021 doi: 10.1101/2021.07.22.21260755.
    1. Tleyjeh IM, Kashour Z, Damlaj M, Riaz M, Tlayjeh H, Altannir M, et al. Efficacy and safety of tocilizumab in COVID-19 patients: a living systematic review and meta-analysis. Clin Microbiol Infect. 2021;27(2):215–227. doi: 10.1016/j.cmi.2020.10.036.

Source: PubMed

3
구독하다