Mechanistic Effects of Aerobic Exercise in Alzheimer's Disease: Imaging Findings From the Pilot FIT-AD Trial

Fang Yu, Michelle A Mathiason, SeungYong Han, Jeffrey L Gunter, David Jones, Hugo Botha, Clifford Jack Jr, Fang Yu, Michelle A Mathiason, SeungYong Han, Jeffrey L Gunter, David Jones, Hugo Botha, Clifford Jack Jr

Abstract

Despite strong evidence from animal models of Alzheimer's disease (AD) supporting aerobic exercise as a disease-modifying treatment for AD, human mechanistic studies are limited with mixed findings. The objective of this pilot randomized controlled trial was to examine the effects of 6-month aerobic exercise on hippocampal volume, temporal meta-regions of interest (ROI) cortical thickness, white matter hyperintensity (WMH) volume, and network failure quotient (NFQ), measured with MRI, in community-dwelling older adults with AD dementia. Additionally, the relationships between 6- and 12-month changes in MRI biomarkers and the AD Assessment Scale-Cognition (ADAS-Cog) were examined. Sixty participants were randomized, but one was excluded because baseline MRI failed quality control: 38 randomized to cycling and 21 to stretching. The intervention was moderate-intensity cycling for 20-50 mins, three times a week for 6 months. Control was low-intensity stretching. The study outcomes include hippocampal volume, temporal meta-ROI cortical thickness, WMH volume, and NFQ. Outcomes were measured at baseline, 6 months, and 12 months. The sample averaged 77.3 ± 6.3 years old with 15.6 ± 2.9 years of education and 53% men. Both groups experienced significant declines over 6 months in hippocampal volume (2.64% in cycling vs. 2.89% in stretching) and temporal meta-ROI cortical thickness (0.94 vs. 1.54%), and over 12 months in hippocampal volume (4.47 vs. 3.84%) and temporal meta-ROI cortical thickness (2.27 vs. 1.79%). These declines did not differ between groups. WMH volume increased significantly with the cycling group increasing less (10.9%) than stretching (24.5%) over 6 months (f = 4.47, p = 0.04) and over 12 months (12.1 vs. 27.6%, f = 5.88, p = 0.02). NFQ did not change significantly over time. Pairwise correlational analyses showed a significant negative correlation between 6-month changes in hippocampal volume and ADAS-Cog (r = -0.34, p < 0.05). To conclude, aerobic exercise may reduce the decline in hippocampal volume and temporal meta-ROI cortical thickness during the intervention period, but the effect sizes are likely to be very small and dose-dependent and reverse once the intervention stops. Aerobic exercise is effective on slowing down WMH progression but has no effect on NFQ. Hippocampal atrophy was associated with cognitive decline during the intervention period. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT01954550.

Keywords: Alzheimer's disease; MRI; dementia; exercise; hippocampal volume; imaging; white matter hyperintensity.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Yu, Mathiason, Han, Gunter, Jones, Botha and Jack.

Figures

Figure 1
Figure 1
CONSORT diagram for MRI. *Patient with failed MRI at baseline excluded as comparison to baseline not available.
Figure 2
Figure 2
Comparison of changes in MRI biomarkers between groups.

References

    1. Alzheimer's Association. (2021). 2021 Alzheimer's Disease Facts and Figures. Available online at: (accessed April 21, 2021).
    1. Bae S., Harada K., Lee S., Harada K., Makino K., Chiba I., et al. . (2020). The effect of a multicomponent dual-task exercise on cortical thickness in older adults with cognitive decline: a randomized controlled trial. J. Clin. Med. 9:1312. 10.3390/jcm9051312
    1. Baker L. D., Bayer-Carter J. L., Skinner J., Montine T. J., Cholerton B. A., Callaghan M., et al. . (2012). High-intensity physical activity modulates diet effects on cerebrospinal amyloid-beta levels in normal aging and mild cognitive impairment. J. Alzheimers Dis. 28, 137–146. 10.3233/JAD-2011-111076
    1. Banik A., Brown R. E., Bamburg J., Lahiri D. K., Khurana D., Friedland R. P., et al. . (2015). Translation of pre-clinical studies into successful clinical trials for alzheimer's disease: what are the roadblocks and how can they be overcome? J. Alzheimers. Dis. 47, 815–843. 10.3233/JAD-150136
    1. Best J. R., Chiu B. K., Liang Hsu C., Nagamatsu L. S., Liu-Ambrose T. (2015). Long-term effects of resistance exercise training on cognition and brain volume in older women: results from a randomized controlled trial. J. Int. Neuropsychol. Soc. 21, 745–756. 10.1017/S1355617715000673
    1. Boa Sorte Silva N. C., Nagamatsu L. S., Gill D. P., Owen A. M., Petrella R. J. (2020). Memory function and brain functional connectivity adaptations following multiple-modality exercise and mind-motor training in older adults at risk of dementia: an exploratory sub-study. Front. Aging Neurosci. 12:22. 10.3389/fnagi.2020.00022
    1. Bouchard C., Rankinen T. (2001). Individual differences in response to regular physical activity. Med. Sci. Sports Exerc. 33 (6 Suppl), S446–S451; discussion S452-3. 10.1097/00005768-200106001-00013
    1. Brown B. M., Peiffer J., Rainey-Smith S. R. (2019). Exploring the relationship between physical activity, beta-amyloid and tau: a narrative review. Ageing Res. Rev. 50:9–18. 10.1016/j.arr.2019.01.003
    1. Brown B. M., Peiffer J. J., Taddei K., Lui J. K., Laws S. M., Gupta V. B., et al. . (2013). Physical activity and amyloid-beta plasma and brain levels: results from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Mol. Psychiatry 18, 875–881. 10.1038/mp.2012.107
    1. Brown B. M., Rainey-Smith S. R., Dore V., Peiffer J. J., Burnham S. C., Laws S. M., et al. . (2018). Self-reported physical activity is associated with tau burden measured by positron emission tomography. J. Alzheimers. Dis. 63, 1299–1305. 10.3233/JAD-170998
    1. Brown B. M., Sohrabi H. R., Taddei K., Gardener S. L., Rainey-Smith S. R., Peiffer J. J., et al. . (2017). Habitual exercise levels are associated with cerebral amyloid load in presymptomatic autosomal dominant Alzheimer's disease. Alzheimers. Dement. 13, 1197–1206. 10.1016/j.jalz.2017.03.008
    1. Colcombe S. J., Erickson K. I., Scalf P. E., Kim J. S., Prakash R., McAuley E., et al. . (2006). Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 61, 1166–1170. 10.1093/gerona/61.11.1166
    1. Cotman C. W., Berchtold N. C. (2007). Physical activity and the maintenance of cognition: learning from animal models. Alzheimer's Dement. 3, S30–S37. 10.1016/j.jalz.2007.01.013
    1. da Costa Daniele T. M., de Bruin C P. F., de Matos R. S., de Bruin G. S., Junior Maia Chaves C., de Bruin S. V. M. (2020). Exercise effects on brain and behavior in healthy mice, Alzheimer's disease and Parkinson's disease model—a systematic review and meta-analysis. Behav. Brain Res. 383:112488. 10.1016/j.bbr.2020.112488
    1. Dao E., Barha C. K., Best J. R., Hsiung G. Y., Tam R., Liu-Ambrose T. (2019). The effect of aerobic exercise on white matter hyperintensity progression may vary by sex. Can. J. Aging 38, 236–244. 10.1017/S0714980818000582
    1. de Souto Barreto P., Andrieu S., Payoux P., Demougeot L., Rolland Y., Vellas B., et al. . (2015). Physical activity and amyloid-beta brain levels in elderly adults with intact cognition and mild cognitive impairment. J. Am. Geriatr. Soc. 63, 1634–1639. 10.1111/jgs.13530
    1. Eldridge S. M., Chan C. L., Campbell M. J., Bond C. M., Hopewell S., Thabane L., et al. . (2016). CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ 355:i5239. 10.1136/bmj.i5239
    1. Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., et al. . (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA. 108, 3017–3022. 10.1073/pnas.1015950108
    1. Fischl B., Dale A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA. 97, 11050–11055. 10.1073/pnas.200033797
    1. Fischl B., Salat D. H., Busa E., Albert M., Dieterich M., Haselgrove C., et al. . (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355. 10.1016/S0896-6273(02)00569-X
    1. Frederiksen K. S., Gjerum L., Waldemar G., Hasselbalch S. G. (2019a). Physical activity as a moderator of alzheimer pathology: a systematic review of observational studies. Curr. Alzheimer Res. 16, 362–378. 10.2174/1567205016666190315095151
    1. Frederiksen K. S., Larsen C. T., Hasselbalch S. G., Christensen A. N., Hogh P., Wermuth L., et al. . (2018). A 16-week aerobic exercise intervention does not affect hippocampal volume and cortical thickness in mild to moderate alzheimer's disease. Front. Aging Neurosci. 10:293. 10.3389/fnagi.2018.00293
    1. Frederiksen K. S., Madsen K., Andersen B. B., Beyer N., Garde E., Hogh P., et al. . (2019b). Moderate- to high-intensity exercise does not modify cortical beta-amyloid in Alzheimer's disease. Alzheimers Dement. 5, 208–215. 10.1016/j.trci.2019.04.006
    1. Graff-Radford J., Arenaza-Urquijo E. M., Knopman D. S., Schwarz C. G., Brown R. D., Rabinstein A. A., et al. . (2019). White matter hyperintensities: relationship to amyloid and tau burden. Brain 142, 2483–2491. 10.1093/brain/awz162
    1. Gurd B. J., Giles M. D., Bonafiglia J. T., Raleigh J. P., Boyd J. C., Ma J. K., et al. . (2016). Incidence of nonresponse and individual patterns of response following sprint interval training. Appl. Physiol. Nutr. Metab. 41, 229–234. 10.1139/apnm-2015-0449
    1. Hautala A. J., Makikallio T. H., Kiviniemi A., Laukkanen R. T., Nissila S., Huikuri H. V., et al. . (2003). Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. Am. J. Physiol. Heart Circ. Physiol. 285, H1747–H152. 10.1152/ajpheart.00202.2003
    1. Head D., Bugg J. M., Goate A. M., Fagan A. M., Mintun M. A., Benzinger T., et al. . (2012). Exercise engagement as a moderator of the effects of APOE genotype on amyloid deposition. Arch. Neurol. 69, 636–643. 10.1001/archneurol.2011.845
    1. Hecksteden A., Pitsch W., Rosenberger F., Meyer T. (2018). Repeated testing for the assessment of individual response to exercise training. J. Appl. Physiol. 124, 1567–1579. 10.1152/japplphysiol.00896.2017
    1. Higgins T. P., Baker M. D., Evans S. A., Adams R. A., Cobbold C. (2015). Heterogeneous responses of personalised high intensity interval training on type 2 diabetes mellitus and cardiovascular disease risk in young healthy adults. Clin. Hemorheol. Microcirc. 59, 365–377. 10.3233/CH-141857365-77
    1. International Alzheimer's Disease. (2016). World Alzheimer Report. Available online at: (accessed June 1, 2016).
    1. Jack C. R., Jr., Petersen R. C., Xu Y., O'Brien P. C., Smith G. E., Ivnik R. J., et al. . (2000). Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55, 484–489. 10.1212/WNL.55.4.484
    1. Jack C. R., Jr., Wiste H. J., Weigand S. D., Therneau T. M., Lowe V. J., Knopman D. S., et al. . (2017). Defining imaging biomarker cut points for brain aging and Alzheimer's disease. Alzheimers. Dement. 13, 205–216. 10.1016/j.jalz.2016.08.005
    1. Jensen C. S., Portelius E., Hogh P., Wermuth L., Blennow K., Zetterberg H., et al. . (2017). Effect of physical exercise on markers of neuronal dysfunction in cerebrospinal fluid in patients with Alzheimer's disease. Alzheimers Dement. 3, 284–290. 10.1016/j.trci.2017.03.007
    1. Jensen C. S., Portelius E., Siersma V., Høgh P., Wermuth L., Blennow K., et al. . (2016). Cerebrospinal fluid amyloid beta and tau concentrations are not modulated by 16 weeks of moderate- to high-intensity physical exercise in patients with Alzheimer disease. Dement. Geriatr. Cogn. Disord. 42, 146–158. 10.1159/000449408
    1. Karavirta L., Hakkinen K., Kauhanen A., Arija-Blazquez A., Sillanpaa E., Rinkinen N., et al. . (2011). Individual responses to combined endurance and strength training in older adults. Med. Sci. Sports Exerc. 43, 484–490. 10.1249/MSS.0b013e3181f1bf0d
    1. Law L. L., Rol R. N., Schultz S. A., Dougherty R. J., Edwards D. F., Koscik R. L., et al. . (2018). Moderate intensity physical activity associates with CSF biomarkers in a cohort at risk for Alzheimer's disease. Alzheimers Dement. 10, 188–195. 10.1016/j.dadm.2018.01.001
    1. Li R., Zhu X., Yin S., Niu Y., Zheng Z., Huang X., et al. . (2014). Multimodal intervention in older adults improves resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe. Front. Aging Neurosci. 6:39. 10.3389/fnagi.2014.00039
    1. Liang K. Y., Mintun M. A., Fagan A. M., Goate A. M., Bugg J. M., Holtzman D. M., et al. . (2010). Exercise and Alzheimer's disease biomarkers in cognitively normal older adults. Ann. Neurol. 68, 311–318. 10.1002/ana.22096
    1. Lortie G., Simoneau J. A., Hamel P., Boulay M. R., Landry F., Bouchard C. (1984). Responses of maximal aerobic power and capacity to aerobic training. Int. J. Sports Med. 5, 232–236. 10.1055/s-2008-1025911
    1. Matsunaga S., Fujishiro H., Takechi H. (2019). Efficacy and safety of cholinesterase inhibitors for mild cognitive impairment:a systematic review and meta-analysis. J. Alzheimers. Dis. 71, 513–523. 10.3233/JAD-190546
    1. McGurran H., Glenn J. M., Madero E. N., Bott N. T. (2019). Prevention and treatment of alzheimer's disease: biological mechanisms of exercise. J. Alzheimers Dis. 69, 311–338. 10.3233/JAD-180958
    1. Morris J. K., Vidoni E. D., Johnson D. K., Van Sciver A., Mahnken J. D., Honea R. A., et al. . (2017). Aerobic exercise for Alzheimer's disease: a randomized controlled pilot trial. PLoS ONE 12:e0170547. 10.1371/journal.pone.0170547
    1. Niemann C., Godde B., Voelcker-Rehage C. (2014). Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front. Aging Neurosci. 6:170. 10.3389/fnagi.2014.00170
    1. Okonkwo O. C., Schultz S. A., Oh J. M., Larson J., Edwards D., Cook D., et al. . (2014). Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology 83, 1753–1760. 10.1212/WNL.0000000000000964
    1. Pandey A., Ayers C., Blair S. N., Swift D. L., Earnest C. P., Kitzman D. W., et al. . (2015). Cardiac determinants of heterogeneity in fitness change in response to moderate intensity aerobic exercise training: the DREW study. J. Am. Coll. Cardiol. 65, 1057–1058. 10.1016/j.jacc.2014.11.062
    1. Raichlen D. A., Klimentidis Y. C., Bharadwaj P. K., Alexander G. E. (2019). Differential associations of engagement in physical activity and estimated cardiorespiratory fitness with brain volume in middle-aged to older adults. Brain Imaging Behav. 14, 1994–2003. 10.1007/s11682-019-00148-x
    1. Robinson M. M., Dasari S., Konopka A. R., Johnson M. L., Manjunatha S., Esponda R. R., et al. . (2017). Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 25, 581–592. 10.1016/j.cmet.2017.02.009
    1. Rose E. A., Parfitt G. (2007). A quantitative analysis and qualitative explanation of the individual differences in affective responses to prescribed and self-selected exercise intensities. J. Sport Exerc. Psychol. 29, 281–309. 10.1123/jsep.29.3.281
    1. Rosen W. G., Mohs R. C., Davis K. L. (1984). A new rating scale for Alzheimer's disease. Am. J. Psychiatry 141, 1356–1364. 10.1176/ajp.141.11.1356
    1. Ross R., Goodpaster B. H., Koch L. G., Sarzynski M. A., Kohrt W. M., Johannsen N. M., et al. . (2019). Precision exercise medicine: understanding exercise response variability. Br. J. Sports Med. 53, 1141–1153. 10.1136/bjsports-2018-100328
    1. Sisson S. B., Katzmarzyk P. T., Earnest C. P., Bouchard C., Blair S. N., Church T. S. (2009). Volume of exercise and fitness nonresponse in sedentary, postmenopausal women. Med. Sci. Sports Exerc. 41, 539–545. 10.1249/MSS.0b013e3181896c4e
    1. Tamura M., Nemoto K., Kawaguchi A., Kato M., Arai T., Kakuma T., et al. . (2015). Long-term mild-intensity exercise regimen preserves prefrontal cortical volume against aging. Int. J. Geriatr. Psychiatry 30, 686–694. 10.1002/gps.4205
    1. ten Brinke L. F., Bolandzadeh N., Nagamatsu L. S., Hsu C. L., Davis J. C., Miran-Khan K., et al. . (2015). Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br. J. Sports Med. 49, 248–254. 10.1136/bjsports-2013-093184
    1. Tolar M., Abushakra S., Sabbagh M. (2020). The path forward in Alzheimer's disease therapeutics: reevaluating the amyloid cascade hypothesis. Alzheimers. Dement. 16, 1553–1560. 10.1016/j.jalz.2019.09.075
    1. Um Y. H., Wang S. M., Kim N. Y., Kang D. W., Na H. R., Lee C. U., et al. . (2020). Effects of moderate intensity exercise on the cortical thickness and subcortical volumes of preclinical Alzheimer's disease patients: a pilot study. Psychiatry Investig. 17, 613–619. 10.30773/pi.2020.0214
    1. Villemagne V. L., Burnham S., Bourgeat P., Brown B., Ellis K. A., Salvado O., Szoeke C., et al. . (2013). Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol. 12, 357–367. 10.1016/S1474-4422(13)70044-9
    1. Voss M. W., Erickson K. I., Prakash R. S., Chaddock L., Malkowski E., Alves H., et al. . (2010). Functional connectivity: a source of variance in the association between cardiorespiratory fitness and cognition? Neuropsychologia 48, 1394–1406. 10.1016/j.neuropsychologia.2010.01.005
    1. Wagner G., Herbsleb M., de la Cruz F., Schumann A., Brunner F., Schachtzabel C., et al. . (2015). Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial. J. Cereb. Blood Flow Metab. 35, 1570–1578. 10.1038/jcbfm.2015.125
    1. Wiepert D. A., Lowe V. J., Knopman D. S., Boeve B. F., Graff-Radford J., Petersen R. C., et al. . (2017). A robust biomarker of large-scale network failure in Alzheimer's disease. Alzheimers Dement. 6, 152–161. 10.1016/j.dadm.2017.01.004
    1. Williamson P. J., Atkinson G., Batterham A. M. (2017). Inter-individual responses of maximal oxygen uptake to exercise training: a critical review. Sports Med. 47, 1501–1513. 10.1007/s40279-017-0680-8
    1. Yu F., Bronas U. G., Konety S., Nelson N. W., Dysken M., Jack C., Jr., et al. . (2014). Effects of aerobic exercise on cognition and hippocampal volume in Alzheimer's disease: study protocol of a randomized controlled trial (The FIT-AD trial). Trials 15:394. 10.1186/1745-6215-15-394
    1. Yu F., Salisbury D., Mathiason M.A. (2020). Inter-individual differences in the responses to aerobic exercise in Alzheimer's disease: findings from the FIT-AD trial. J. Sport Health Sci. 10, 65–72. 10.1016/j.jshs.2020.05.007
    1. Yu F., Vock D. M., Zhang L., Salisbury D., Nelson N. W., Chow L. S., et al. . (2021). Cognitive effects of aerobic exercise in Alzheimer's disease: a pilot randomized controlled trial. J. Alzheimer's Dis. 80, 233–244. 10.3233/JAD-201100

Source: PubMed

3
구독하다